
FOR PUBLICATION 1

Extended-Precision Floating-Point Numbers for
GPU Computation

Andrew Thall, Alma College

Abstract— Double-float (df64) and quad-float (qf128) numeric
types can be implemented on current GPU hardware and used
efficiently and effectively for extended-precision computational
arithmetic. Using unevaluated sums of paired or quadrupled
f32 single-precision values, these numeric types provide ap-
proximately 48 and 96 bits of mantissa respectively at single-
precision exponent ranges for computer graphics, numerical, and
general-purpose GPU programming. This paper surveys current
art, presents algorithms and Cg implementation for arithmetic,
exponential and trigonometric functions, and presents data on
numerical accuracy on several different GPUs. It concludes with
an in-depth discussion of the application of extended precision
primitives to performing fast Fourier transforms on the GPU for
real and complex data.

[Addendum (July 2009): the presence of IEEE compliant
double-precision hardware in modern GPUs from NVidia and
other manufacturers has reduced the need for these techniques.
The double-precision capabilities can be accessed using CUDA or
other GPGPU software, but are not (as of this writing) exposed
in the graphics pipeline for use in Cg-based shader code. Shader
writers or those still using a graphics API for their numerical
computing may still find the methods described herein to be of
interest.]

Index Terms— floating-point computation, extended-precision,
graphics processing units, GPGPU, Fast Fourier Transforms,
parallel computation
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I. INTRODUCTION

MODERN GPUs have wide data-buses allowing extremely
high throughput, effecting a stream-computing model and

allowing SIMD/MIMD computation at the fragment (pixel) level.
Machine precision on current hardware is limited, however, to
32-bit nearly IEEE 754 compliant floating-point. This limited
precision of fragment-program computation presents a draw-
back for many general-purpose (GPGPU) applications. Extended-
precision techniques, developed previously for CPU computation,
adapt well to GPU hardware; as programmable graphics pipelines
its IEEE compliance, extending precision becomes increasingly
straightforward; as future generations of GPUs move to hardware
support for higher precision, these techniques will remain useful,
leveraging parallelism and sophisticated instruction sets of the
hardware (e.g., vector-parallelism, fused multiply-adds, etc.) to
provide greater efficiencies for extended-precision than has been
seen in most CPU implementations.

Higher precision computations are increasingly necessary for
numerical and scientific computing (see Bailey [1], Dinechin
et al [2]). Techniques for extended and mixed precision com-
putation have been available for general purpose programming
through myriad software packages and systems, but there have

been only limited attempts to apply these methods for general-
purpose graphics-processing-unit (GPGPU) computation, which
have been hampered by having at best f32single-precision float-
ing point capability. Some success has been achieved in using
augmenting GPU based computation with double-precision CPU
correction terms: Göddeke et al [3] mix GPU computation with
CPU-based double-precision defect correction in Finite-Element
simulation, achieving a 2× speedup over tuned CPU-only code
while maintaining the same accuracy.

Myer and Sutherland [4] coined the term wheel of reincarnation
to describe the evolution of display processor technology as a
never-ending series of hardware innovations are created as add-
on special purpose systems. Such esoteric hardware is always in
a race-against-time against generic processors; advanced capabil-
ities developed for special-purpose systems are invariably folded
back into commodity CPU technology as price-performance
breakpoints allow. We are currently in a unique time vis-a-
vis the CPU/GPU dichotomy, where the stream programming
model inherent in GPU hardware has allowed the computational
power of GPUs to rocket past that of the relatively static per-
formance of the single-processor CPU over the near past and
as projected for the near future. GPU-based stream processors
avoids a major pitfall of prior parallel processing systems in being
nearly ubiquitous; because of the relative cheapness of GPUs and
their use in popular, mass-marketed games and game-platforms,
inexpensive systems are present and in on most commodity
computers currently sold. Because of this omnipresence, these
processors show programmability—quality and choices of APIs,
multiple hardware platforms running the same APIs, stability
of drivers—far beyond that of the special-purpose hardware of
previous generations.

These trends are expected to continue: when innovative break-
throughs are made in CPU technology, these can be expected
to be applied by the GPU manufacturers as well. CPU trends
to multi-core systems will provide hardware parallel of the
classic MIMD variety; these can be expected to have the same
weaknesses of traditional parallel computers: synchronization,
deadlock, platform-specificity and instability of applications and
supporting drivers under changes in hardware, firmware, and
OS capabilities. While systems such as OpenMP and OpenPVM
provide platform and OS independence, it remains the case that
unless it is worth the developer’s time, advanced capabilities
and algorithms will remain experimental, brittle, platform-specific
curiosities. The advantage of the stream-based computational
model is its simplicity.

This paper will survey prior and current art in extended-
precision computation and in application of this to GPUs. It will
then describe an implementation of a df64 and qf128 library for
current generation GPUs, show data on numerical accuracy for
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basic operations and elementary functions, and discuss limitations
of these techniques for different hardware platforms.

II. BACKGROUND: ARBITRARY PRECISION ARITHMETIC

Techniques for performing extended-precision arithmetic in
software using pairs of machine-precision numbers have a long
history: Dekker [5] is most often cited on the use of unevalu-
ated sums in extended-precision research prior to the IEEE 754
standard, with Linnainmaa [6] generalizing the work of Dekker
to computer independent implementations dependent on faithful
rounding. Such methods are distinct from alternative approaches
exemplified by Brent [7], Smith [8], and Bailey [9] that assign
special storage to exponent and sign values and store mantissa bits
in arbitrary-length integer arrays. A general survey of arbitrary
precision methods is Zimmermann [10]

Priest [11] in 1992 did a full study of extended-precision
requirements for different radix and rounding constraints.
Shewchuk [12] drew basic algorithms from Priest but restricted
his techniques and analyses to the IEEE 754 floating-point stan-
dard [13], radix-2, and exact rounding; these allowed relaxation of
normalization requirements and led to speed improvements. These
two provided the theoretical underpinnings for the single-double
FORTRAN library of Bailey [14], the doubledouble C++ library
of Briggs [15] and the C++ quad-doubles of Hida et al [16], [17].
The use and hazards of double- and quad-precision numerical
types is discussed by Li et al [18], in the context of extended-
and mixed-precision BLAS libraries.

For methods based on Shewchuk’s and Priest’s techniques,
faithful rounding is crucial for correctness. Requirements in
particular of IEEE-754 compliance create problematic difficulties
for older graphics display hardware; latest generation GPUs are
much more compliant with the IEEE standard.

A. Extended-Precision Computation

The presentation here will follow that of Shewchuk [12]. Given
IEEE 754 single-precision values, with exact rounding and round-
to-even on ties, for binary operations ∗ ∈ {+,−,×, /}, the
symbols ~ ∈ {⊕,ª,⊗,®} represent b-bit floating-point version
with exact-rounding, i.e.,

a ~ b ≡ fl(a ∗ b) = a ∗ b + err(a ~ b), (1)

where err(a ~ b) is the difference between the correct arithmetic
and the floating-point result; exact rounding guarantees that

|err(a ~ b)| ≤ 1

2
ulp(a ~ b). (2)

Extended-precision arithmetic using unevaluated sums of
single-precision numbers rests on a number of algorithms (based
on theorems by Dekker [5] and Knuth [19]) used for defining
arithmetic operations precisely using pairs of non-overlapping
results.

Theorem 1 Dekker [5] Let a and b be p-bit floating-point
numbers such that |a| ≥ |b|. Then the following algorithm will
produce a nonoverlapping expansion x+y such that a+b = x+y,
where x is an approximation to a+b and y represents the roundoff
error in the calculation of x.
Two floating-point numbers x and y are nonoverlapping if the
least-significant non-zero bit of x is more significant than the
most-significant non-zero bit of y, or vice-versa. An expansion

Algorithm 1 Fast-Two-Sum
Require: |a| ≥ |b|, p-bit floating point numbers

1: procedure FAST-TWO-SUM(a, b)
2: x ← a⊕ b

3: bvirtual ← xª a

4: . bvirtual is the actual value added to x in 2
5: y ← bª bvirtual

6: return (x, y)

7: . x + y = a + b, where y is roundoff error on x

8: end procedure

is non-overlapping if all of its components are mutually non-
overlapping. We will also define two numbers x and y as adjacent
if they overlap, if x overlaps 2y or if y overlaps 2x. An expansion
is nonadjacent if no two of its components are adjacent.

Theorem 2 Knuth [19] Let a and b be p-bit floating-point
numbers where p ≥ 3. Then the following algorithm will produce
a nonoverlapping expansion x+y such that a+ b = x+y, where
x is an approximation to a+b and y represents the roundoff error
in the calculation of x.

Algorithm 2 Two-Sum
Require: a, b, p-bit floating point numbers, where p ≥ 3

1: procedure TWO-SUM(a, b)
2: x ← a⊕ b

3: bvirtual ← xª a

4: avirtual ← xª bvirtual

5: broundoff ← bª bvirtual

6: aroundoff ← aª avirtual

7: y ← aroundoff ⊕ broundoff

8: return (x, y)

9: . x + y = a + b, where y is roundoff error on x

10: end procedure

The following corollary, forming the heart of multiple-term ex-
pansions as numerical representations:

Corollary 3 Let x and y be the values returned by FAST-TWO-
SUM or TWO-SUM. On a machine whose arithmetic uses round-
to-even tiebreaking, x and y are nonadjacent.

Given these building blocks, Shewchuk describes expansion-
sum algorithms for adding arbitrary-length numbers each repre-
sented by sequences of nonadjacent terms to get another such
nonadjacent sequence as the exact sum. For the purpose of double-
and quad-precision numbvers, the ones of importance regard pairs
and quads of nonadjacent terms that form the df64 and qf128

representations.
Multiplication of multiple-term expansions also rests on a few

basic theorems, one by Dekker [5] and another that he attributes
to G. W. Veltkamp.

Theorem 4 Dekker [5] Let a a p-bit floating-point number where
p ≥ 3. Choose a splitting point s such that p

2 ≤ s ≤ p− 1. Then
the following algorithm will produce a (p− s)-bit value ahi and
a nonoverlapping (s − 1)-bit value alo, such that |ahi| ≥ |alo|
and a = ahi + alo.
Sherchuk emphasizes the strangeness of representing a p-bit
number with two numbers that together have only (p - 1)-
significant bits; this is possible because alo is not necessarily
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TABLE I
GPU FLOATING-POINT PARANOIA RESULTS ON NVIDIA ARCHITECTURE. BOUNDS ARE IN ulps FOR s23e8 REPRESENTATION.

Operation Exact rounding chopped NV35 NV40 & G70 G80
(IEEE-754) fp30 fp40 gp4fp

Addition [-0.5, 0.5] (-1.0, 0.0] [-1.000, 0.000] [-1.000, 0.000] [-0.5, 0.5]
Subtraction [-0.5, 0.5] (-1.0, 0.0) [-1.000, 1.000] [-0.75, 0.75] [-0.5, 0.5]

Multiplication [-0.5, 0.5] (-1.0, 0.0] [-0.989, 0.125] [-0.78125, 0.625] [-0.5, 0.5]
Division [-0.5, 0.5] (-1.0, 0.0] [-2.869, 0.094] [-1.19902, 1.37442] [-1.58222, 1.80325]

Algorithm 3 Split
Require: a, a p-bit floating point number, where p ≥ 3

Require: s, p
2 ≤ s ≤ p− 1

1: procedure SPLIT(a, s)
2: c ← (2s + 1)⊗ a

3: abig ← cª a

4: ahi ← cª abig

5: alo ← aª ahi

6: return (ahi, alo)

7: end procedure

of the same sign as ahi—the result of Alg. 3 is that the sign-bit
of alo stores the extra bit needed for a p-bit significand. (This is
especially important for splitting IEEE double-precision numbers,
for which p = 53, and which, though odd, can be split into two
bp

2 c-bit values without loss of precision.)
Using this splitting algorithm, a precise multiplication algo-

rithm can now be created.

Theorem 5 by Veltkamp [5] Let a and b be p-bit floating-point
numbers where p ≥ 6. Then the following algorithm will produce
a nonoverlapping expansion x + y such that ab = x + y, where x

is an approximation to ab and y represents the roundoff error in
the calculation of x. Furthermore, if round-to-even tiebreaking is
used, x and y are nonadjacent.

Algorithm 4 Two-Product
Require: a, b, p-bit floating point numbers, where p ≥ 6

1: procedure TWO-PRODUCT(a, b)
2: x ← a⊗ b

3: (ahi, alo) = SPLIT(a, dp
2 e)

4: (bhi, blo) = SPLIT(b, dp
2 e)

5: err1 ← xª (ahi ⊗ bhi)

6: err2 ← err1 ª (alo ⊗ bhi)

7: err3 ← err2 ª (ahi ⊗ blo)

8: y ← (alo ⊗ blo ª err3

9: return (x, y)

10: end procedure

B. Extended Precision on GPUs

The hardware support for vector operations in fragment pro-
grams makes them well-suited for double- and quad-precision
computation. Preliminary exploration of the feasibility and error-
characteristics of GPU double-floats has been done using the Cg
language by Meredith et al [20] and Thall [21], and, using the
Brook language, by Da Graça and Defour [22]. The Gödekke
article [3] present a survey that includes these and related exper-
iments in the GPGPU community.

C. Numerical Capabilites and Limitations of GPUs: GPU Para-
noia

Marginal IEEE 754 compliance until recently, when became
pretty good on G80/NV8800. Rounding-modes and characteristics
of computation not fully compliant.

Testing accuracy and precision of hardware systems is problem-
atic; for a survey see Cuyt et al [23]. The Paranoia system [24],
developed by Kahan in the early 1980s, was the inspiration
for GPU Paranoia by Hillesland and Lastra [25], a software
system for characterizing the floating point behavior of GPU
hardware. GPU Paranoia provides a test-suite estimating floating
point arithmetic error in the basic function, as well as char-
acterizing apparent number of guard digits and correctness of
rounding modes. Recent GPU hardware has shown considerable
improvement over earlier. For the purposes of extended-precision
computation, 32-bit floats are required. For Nvidia GPUs, the
6800 series and above were the first to have sufficient precision
and IEEE compliance for extended-precision numerical work; the
7800/7900/7950 series has better IEEE compliance, allowing all
but the transcendental functions to be computed; for computa-
tions involving Taylor series, rather than self-correcting Newton-
Raphson iterations, the superior round-off behavior and guard-
digits of the 8800 series are necessary.

Test run with Hillesland’s GPU Paranoia generate results shown
in Table I.

D. FMAD or Just Angry?

Extended precision arithmetic can be made much more efficient
on architectures that implement a fused-multiply-add (FMAD or
FMA) in hardware. An FMAD instruction allowing the computa-
tion of a×b+c to machine precision with only a single round-off
error. This allows a much simpler twoProd() function to be used
in place of Alg. 4:

Theorem 6 Hida [17], Pg. 6 Let a and b be p-bit floating-
point numbers where p ≥ 6. Then, on a machine implementing
an FMAD instruction, the following algorithm will produce a
nonoverlapping expansion x + y such that ab = x + y, where x

is an approximation to ab and y represents the roundoff error in
the calculation of x. Furthermore, if round-to-even tiebreaking is
used, x and y are nonadjacent.

Algorithm 5 Two-Product-FMA
Require: a, b, p-bit floating point numbers, where p ≥ 6

1: procedure TWO-PRODUCT-FMA(a, b)
2: x ← a⊗ b

3: y ← FMA(a× b− x)

4: return (x, y)

5: end procedure
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The attractiveness of this algorithm is obvious; it depends, how-
ever, both on the correct error bounding of the hardware operation
and on the ability of compilers to use the FMAD if and only
if the programmer requires it. Even on hardware that correctly
implements the FMAD instruction, an overly helpful compiler
is all too likely to return a value y = 0. This is especially
problematic for a language such as Cg that is designed to optimize
heavily even at the expense of accuracy, and where compilation
is only to an intermediate assembly language that hides critical
architectural details. The current df64 and qf128 implementations
therefore use the longer Alg. 4.

III. IMPLEMENTING GPU df64 AND qf128 FLOATING POINT

This discussion begin with df64 methods and then take up
the challenges of qf128 implementation on current GPUs. While
the techniques for this generalize from the CPU methods of
Shewchuck [12] and Hida et al [16], the difficulty of imple-
menting these in the limiting environment of GPU programming
domain is not to be dismissed.

A. GPU Implementation of df64 Numbers

A df64 number A is an unevaluated sum of two f32 numbers
represented the value of the floating point result and its error term.

Adf64 = [ahi, alo] (3)

A = ahi + alo (4)

Arithmetic operations on these numbers are done exactly using
alo as an error term for ahi term. This allows 48-bits of precision
available in the pair of values (23 bits +1 hidden per mantissa). (It
is misleading, however, to call this a 48-bit floating point number,
since numbers such as 260 + 2−60 are exactly representable.)

Discussion of GPU-based arithmetic using these primitives will
be divided into basic operations:

1) convertion between d64 and df64 representations,
2) twoSum and df64 add operations,
3) splitting, twoProd, and df64 mult operations,
4) division and square-root functions,
5) comparison operations,
6) exponential, logarithmic, and trigonometric functions, and,
7) modular-division and remainder operations.

The algorithms described and implemented here have been
tested on Nvidia graphics hardware: Geforce 6800, 7900, and
8800 consumer grade cards, and depend as noted on the single-
precision floating point characteristics of these and related plat-
forms. Unless otherwise noted, routines will run on the least
powerful of these platforms and under Cg 1.5 using fp40.

1) Conversion between Representations: Single-precision f32

converts trivially to and from df64 precision by respectively
setting the low-order bits of the df64 number to zero, or assigning
the high-order bits to the f32 number.

To convert between d64 and df64 numbers on Intel-based
CPUs, the extended-precision internal format (doubles with 64-
bit mantissa, rather than 53 bits) must be disabled d64 precision
in order to get correct splitting of a d64 value into the nearest f32

value and corrector that form the df64 pair (see Hida et al. [16]).

c o n s t double SPLITTER = (1 << 29) + 1 ;
void df64 : : s p l i t ( double a , f l o a t ∗ a h i , f l o a t ∗ a l o ) {

double t = a∗SPLITTER ;
double t h i = t − ( t − a ) ;
double t l o = a − t h i ;

∗ a h i = ( f l o a t ) t h i ;
∗ a l o = ( f l o a t ) t l o ;

}

Conversion from df64 to d64 requires only the summation of the
high and low order terms.

2) TwoSum and df64 add operations: Addition in df64 de-
pends on helper functions to sum f32 components and return df64

results. The twoSum() function computes the sum and error
terms for general cases; the quickTwoSum() function assumes
a > b.

f l o a t 2 quickTwoSum ( f l o a t a , f l o a t b ) {
f l o a t s = a + b ;
f l o a t e = b − ( s − a ) ;
re turn f l o a t 2 ( s , e ) ;

}

f l o a t 2 twoSum ( f l o a t a , f l o a t b ) {
f l o a t s = a + b ;
f l o a t v = s − a ;
f l o a t e = ( a − ( s − v ) ) + ( b − v ) ;
re turn f l o a t 2 ( s , e ) ;

}

f l o a t 2 d f 6 4 a d d ( f l o a t 2 a , f l o a t 2 b ) {

f l o a t 2 s , t ;
s = twoSum ( a . x , b . x ) ;
t = twoSum ( a . y , b . y ) ;
s . y += t . x ;
s = quickTwoSum ( s . x , s . y ) ;
s . y += t . y ;
s = quickTwoSum ( s . x , s . y ) ;
re turn s ;

}

This addition satisfies IEEE style error bound

a⊕ b = (1 + δ)(a + b) (5)

due to K. Briggs and W. Kahan.
On vector-based GPU hardware (in this study, pre-NV8800

GPUs), there is there is a 2× speedup in performing operations
simultaneously on two-vector and four-vector components. The
above df64_add() can in this way be done with only a single
call to the twoSum() which can be used as well to add real and
imaginary components of single-precision complex numbers (f32

real and imaginary pair) simultaneously.

f l o a t 4 twoSumComp ( f l o a t 2 a r i , f l o a t 2 b r i ) {

f l o a t 2 s = a r i + b r i ;
f l o a t 2 v = s − a r i ;
f l o a t 2 e = ( a r i − ( s − v ) ) + ( b r i − v ) ;
re turn f l o a t 4 ( s . x , e . x , s . y , e . y ) ;

}
f l o a t 2 d f 6 4 a d d ( f l o a t 2 a , f l o a t 2 b ) {

f l o a t 4 s t ;
s t = twoSumComp ( a , b ) ;
s t . y += s t . z ;
s t . xy = quickTwoSum ( s t . x , s t . y ) ;
s t . y += s t .w;
s t . xy = quickTwoSum ( s t . x , s t . y ) ;
re turn s t . xy ;

}
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3) splitting, twoProd, and df64 mult operations: At the heart
of the extended-precision multiply is the splitting of f32 values
into high and low order terms whose products will fit into a
f32 values without overflow. The split() function takes an
f32 float as input and returns the high and low order terms
as a pair of floats. As for twoSum() above, vector-operation-
based GPUs can achieve a 2× speedup by performing two splits
simultaneously.

f l o a t 2 s p l i t ( f l o a t a ) {

c o n s t f l o a t s p l i t = 4097 ; / / ( 1 << 12) + 1;
f l o a t t = a∗ s p l i t ;
f l o a t a h i = t − ( t − a ) ;
f l o a t a l o = a − a h i ;
re turn f l o a t 2 ( a h i , a l o ) ;

}

f l o a t 4 sp l i tComp ( f l o a t 2 c ) {

c o n s t f l o a t s p l i t = 4097 ; / / ( 1 << 12) + 1;
f l o a t 2 t = c∗ s p l i t ;
f l o a t 2 c h i = t − ( t − c ) ;
f l o a t 2 c l o = c − c h i ;
re turn f l o a t 4 ( c h i . x , c l o . x , c h i . y , c l o . y ) ;

}

The twoProd() function multiplies two f32 values to produce
a df64 result, using f32 multiplication to produce the high-order
result p and computing the low-order term as the error using split-
components of the input a and b. Thus,

a = ahi + alo (6)

b = bhi + blo (7)

=⇒ (8)

ab = (ahi + alo) · (bhi + blo) (9)

= ahibhi + ahiblo + alobhi + aloblo (10)

(11)

and the error term of the single-precision p = a ⊗ b can be
computed by subtracting p from the split-product, beginning with
the most-significant term.

f l o a t 2 twoProd ( f l o a t a , f l o a t b ) {
f l o a t p = a∗b ;
f l o a t 2 aS = s p l i t ( a ) ;
f l o a t 2 bS = s p l i t ( b ) ;
f l o a t e r r = ( ( aS . x∗bS . x − p )

+ aS . x∗bS . y + aS . y∗bS . x )
+ aS . y∗bS . y ;

re turn f l o a t 2 ( p , e r r ) ;
}

As before, the pair of splits can be coalesced into a single double-
wide split on vector-based GPUs.

Tests with the Cg 1.5 compiler on G70 hardware show that the
FMA-twoprod()

f l o a t 2 FMA−twoProd ( f l o a t a , f l o a t b ) {
f l o a t x = a∗b ;
f l o a t y = a∗b − x ;
re turn f l o a t 2 ( x , y ) ;

}

does not correctly yield the df64 product and error term, due as
expected to the aggressive optimization of the Cg compiler.

Thus armed, the df64_mult() can now be computed:

f l o a t 2 d f 6 4 m u l t ( f l o a t 2 a , f l o a t 2 b ) {
f l o a t 2 p ;

p = twoProd ( a . x , b . x ) ;
p . y += a . x ∗ b . y ;
p . y += a . y ∗ b . x ;
p = quickTwoSum ( p . x , p . y ) ;
re turn p ;

}

Special cases: squaring of df64 values can be done more ef-
ficiently with special twoSqr() and df64_sqr() methods;
multiplication—and division—by powers-of-two is trivial, since
the high and low-order terms can be multiplied or divided
independently.

4) Division and Square-Root Functions: Division and square-
root functions can be implemented using Newton-Raphson it-
eration. Since these methods are quadratically convergent in
the neighborhood of their roots, the single-precision quotient or
square-root serves as an excellent initial estimator; since these
methods are self-correcting, the precision of the initial estimate
is also not critical, and only one or two iterations thereafter are
needed to produce df64 or qf128 precision.

Further and quite substantial speedups can be achieved using
Karp’s method (Karp and Markstein [26], used by Briggs [15],
Hida [16]), which reduces the number of extended-precision op-
erations needed in the Newton iteration. The algorithm for Karp’s
division algorithm is given in 6. This allows a double precision

Algorithm 6 Karp’s Method for High-Precision Division
Require: A 6= 0, B, double-precision floating point values

1: procedure KARP’S DIVISION(B, A)
2: xn ← 1/Ahi . single ← single/single
3: yn ← Bhi ∗ xn . single ← single∗single
4: Compute Ayn . double ← double∗single
5: Compute (B −Ayn) . single ← double∗double
6: Compute xn(B −Ayn) . double ← single∗single
7: q ← yn + xn(B −Ayn) . double ← single+double
8: return q . the double-precision B/A

9: end procedure

division with only a low-precision division, a single double-
double multiply, and four single- or mixed-precision operations.
A Cg implementation of this is straightforward. Karp gives a
similar mixed-precision algorithm for square-roots (see 7). The

Algorithm 7 Karp’s Method for High-Precision Square-Root
Require: A > 0, double-precision floating point value

1: procedure KARP’S SQUARE-ROOT(A)
2: xn ← 1/

√
Ahi . single ← single/single

3: yn ← Ahixn . single ← single∗single
4: Compute y2

n . double ← single∗single
5: Compute (A− y2

n)hi . single ← double−double
6: Compute xn(A− y2

n)hi/2 . double ← single∗single/2
7: q ← yn + xn(A− y2

n)/2 . double ← single+double
8: return q . the double-precision +

√
A

9: end procedure

Cg implementation for this shows similarly substantial speedups
over naive implementations. (The reciprocal square-root in Step 2
is a single operation on common graphics hardware and in
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f l o a t 2 d f 6 4 d i v ( f l o a t 2 B , f l o a t 2 A) {

f l o a t xn = 1 . 0 f /A. x ;
f l o a t yn = B . x∗xn ;
f l o a t d i f f = ( d f 6 4 d i f f (B , d f 6 4 m u l t (A, yn ) ) ) . x ;
f l o a t 2 prod = twoProd ( xn , d i f f T e r m ) ;

re turn d f 6 4 a d d ( yn , prodTerm ) ;
}

f l o a t 2 d f 6 4 s q r t ( f l o a t 2 A) {

f l o a t xn = r s q r t (A. x ) ;
f l o a t yn = A. x∗xn ;
f l o a t 2 y n s q r = d f 6 4 s q r ( yn ) ;

f l o a t d i f f = ( d f 6 4 d i f f (A, y n s q r ) ) . x ;
f l o a t 2 prod = twoProd ( xn , d i f f ) / 2 ;

re turn d f 6 4 a d d ( yn , prodTerm ) ;
}

Fig. 1. Cg implementations of Karp’s mixed-precision division and square-
root algorithms

bool d f 6 4 e q ( f l o a t 2 a , f l o a t 2 b ) {
re turn a l l ( a == b ) ;

}

bool d f 6 4 n e q ( f l o a t 2 a , f l o a t 2 b ) {
re turn any ( a != b ) ;

}

bool d f 6 4 l t ( f l o a t 2 a , f l o a t 2 b ) {
re turn ( a . x < b . x | | ( a . x == b . x && a . y < b . y ) ) ;

}

Fig. 2. Cg implementations of basic df64 conditional tests. Note that
comparisons between vector-based data are done component-wise.

the Cg language.) Figure 1 shows Cg implementations of both
algorithms.

5) Comparison Operations: The common Boolean compar-
isons {=, 6=, <,≤, >,≥} can be implemented in double-float
precision by “short-circuit” conditional tests, reducing the likely
number of single-float conditional tests to be no greater than a
single test by comparing first the high-order terms of the two num-
bers. Current Cg profiles do not allow short-circuit comparisons,
however, since conditional branching is much more costly than
conditional testing, which can be performed in parallel on vector
GPUs. The special case of comparison to zero always involves
only a single comparison. Examples of Boolean comparisons are
given in Fig. 2.

6) Exponential, Logarithmic, and Trigonometric Functions:
Evaluation of extended-precision transcendental functions on the
GPU shares the range of challenges common to all numerical
techniques for software evaluation of these functions. Typically,
range-reduction is used to bring the value to be evaluated into an
acceptable range, then an algorithmic method based on Newton it-
eration, Taylor series, or table-based polynomial or Padé (rational)
approximations are used to compute the answer to the necessary
precision, followed by modification based on the range-reduction
to produce the correct value. See [27] for a discussion of many
different methods. A good discussion of Padé approximation
is found in [28]. Correct rounding of transcendentals is often
problematic even in conventional CPU libraries; for a discussion

f l o a t 2 df64 expTAYLOR ( f l o a t 2 a ) {

c o n s t f l o a t t h r e s h = 1 . 0 e−20∗exp ( a . x ) ;
f l o a t 2 t ; /∗ Term b e i n g added . ∗ /
f l o a t 2 p ; /∗ C u r r e n t power o f a . ∗ /
f l o a t 2 f ; /∗ Denominator . ∗ /
f l o a t 2 s ; /∗ C u r r e n t p a r t i a l sum . ∗ /
f l o a t 2 x ; /∗ = −s q r ( a ) ∗ /
f l o a t m;

s = d f 6 4 a d d ( 1 . 0 f , a ) ; / / f i r s t two t e r m s
p = d f 6 4 s q r ( a ) ;
m = 2 . 0 f ;
f = f l o a t 2 ( 2 . 0 f , 0 . 0 f ) ;
t = p / 2 . 0 f ;
whi le ( abs ( t . x ) > t h r e s h ) {

s = d f 6 4 a d d ( s , t ) ;
p = d f 6 4 m u l t ( p , a ) ;
m += 1 . 0 f ;
f = d f 6 4 m u l t ( f , m) ;
t = d f 6 4 d i v ( p , f ) ;

}

re turn d f 6 4 a d d ( s , t ) ;
}

Fig. 3. Cg implementations of exp(x) using a Taylor series, for |x| < ln 2
128

.
Range-reduction is handled in an enclosing routine.

f l o a t 2 d f 6 4 l o g ( f l o a t 2 a ) {

f l o a t 2 x i = f l o a t 2 ( 0 . 0 f , 0 . 0 f ) ;

i f ( ! d f 6 4 e q ( a , 1 . 0 f ) ) {
i f ( a . x <= 0 . 0 )

x i = l o g ( a . x ) . xx ; / / r e t u r n NaN
e l s e {

x i . x = l o g ( a . x ) ;
x i = d f 6 4 a d d ( d f 6 4 a d d ( xi ,

d f 6 4 m u l t ( d f 6 4 e x p(−x i ) , a ) ) , −1.0) ;
}

}
re turn x i ;

}

Fig. 4. Cg implementations of ln(x) using Newton-Raphson iteration. The
initial approximation is provided by a single-precision result.

of issues and methods for full-precision results, see Gal [29] and
Brisbarre et al [30].

Particular challenges to the GPU occur when inaccuracies in
rounding of basic operations make range-reduction and evalua-
tion of series solutions problematic. Inaccurate range-reduction
followed by nearly correct approximation followed by inaccurate
restoration to final value can quickly chew up a substantial
fraction of the extended precision one hoped for. In general,
methods based on Newton iteration fare better than those based
on Taylor series or table-based approximation.

In terms of hardware capability, pre-8800 NVidia hardware can
be used for exponential functions but computation of accurate
logarithms, sines and cosines has been reliably achieved only
on G80 (8800) cards, with their markedly better IEEE 754
compliance.

7) Modular Division and Remainder Operations: Major has-
sles. Cg 2.0 essential. 8800 essential.
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f l o a t 4 df64 sincosTAYLOR ( f l o a t 2 a ) {

c o n s t f l o a t t h r e s h = 1 . 0 e−20 ∗ abs ( a . x ) ∗ ONE;
f l o a t 2 t ; /∗ Term b e i n g added . ∗ /
f l o a t 2 p ; /∗ C u r r e n t power o f a . ∗ /
f l o a t 2 f ; /∗ Denominator . ∗ /
f l o a t 2 s ; /∗ C u r r e n t p a r t i a l sum . ∗ /
f l o a t 2 x ; /∗ = −s q r ( a ) ∗ /
f l o a t m;

f l o a t 2 s i n a , c o s a ;
i f ( a . x == 0 . 0 f ) {

s i n a = f l o a t 2 (ZERO, ZERO ) ;
c o s a = f l o a t 2 (ONE, ZERO ) ;

}
e l s e {

x = −d f 6 4 s q r ( a ) ;
s = a ;
p = a ;
m = ONE;
f = f l o a t 2 (ONE, ZERO ) ;
whi le ( t ru e ) {

p = d f 6 4 m u l t ( p , x ) ;
m += 2 . 0 f ;
f = d f 6 4 m u l t ( f , m∗(m−1)) ;
t = d f 6 4 d i v ( p , f ) ;
s = d f 6 4 a d d ( s , t ) ;
i f ( abs ( t . x ) < t h r e s h )

break ;
}

s i n a = s ;
c o s a = d f 6 4 s q r t ( d f 6 4 a d d (ONE, −d f 6 4 s q r ( s ) ) ) ;

}
re turn f l o a t 4 ( s i n a , c o s a ) ;

}

Fig. 5. Cg implementations of sin(x) and cos(x) using Taylor series
expansion.

B. GPU Implementation of qf128 Numbers

The implementation and discussion here once again follows
that of Hida [17] on efficient quad-double implementation. A
qf128 number A is an unevaluated sum of four f32 numbers
allowing 96-bits of precision in single-precision exponent ranges.
In this representation,

Aqf128 = [a1, a2, a3, a4]

A = a1 + a2 + a3 + a4

for single-precision an, where a1, a2, a3, a4 store successively
lower-order bits in the number. Arithmetic operations on qf128

numbers depends on the same splitting, two-sum and two-prod
operations as df64 computation; an additional renormalization step
is also required to....[xxAT ensure a consistent representation?].
A five-input version of this is shown in Fig. 6.

Given this renormalization function, it is also necessary to
have n-Sum functions taking different numbers of inputs and
producing different numbers of outputs. With these in hand, a
basic qf_add() function can be implemented as in Fig. 7. This
method of addition does not satisfy IEEE-style error bound but
rather

a⊕ b = (1 + δ1)a + (1 + δ2)b, with |δ1|, |δ2| ≤ εqf128 (12)

For proofs of these bounds for quad-doubles, see Hida [17]. IEEE
bounds on qf128 addition can be achieved using an algorithm by
Shewchuk [12] and Boldo [31]; this requires costly sorting of
terms and a float-accumulate operation (with a factor of 2–3.5x

f l o a t 4 q f r e n o r m a l i z e ( f l o a t a0 , f l o a t a1 , f l o a t a2 ,
f l o a t a3 , f l o a t a4 ) {

f l o a t s ;
f l o a t t0 , t1 , t2 , t3 , t 4 ;
f l o a t s0 , s1 , s2 , s3 ;
s0 = s1 = s2 = s3 = 0 . 0 f ;

s = quickTwoSum ( a3 , a4 , t 4 ) ;
s = quickTwoSum ( a2 , s , t 3 ) ;
s = quickTwoSum ( a1 , s , t 2 ) ;
t 0 = quickTwoSum ( a0 , s , t 1 ) ;

f l o a t 4 b = f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

i n t c o u n t = 0 ;
s0 = quickTwoSum ( t0 , t1 , s1 ) ;
i f ( s1 != 0 . 0 ) {

s1 = quickTwoSum ( s1 , t2 , s2 ) ;
i f ( s2 != 0 . 0 ) {

s2 = quickTwoSum ( s2 , t3 , s3 ) ;
i f ( s3 != 0 . 0 )

s3 += t 4 ;
e l s e

s2 += t 4 ;
}
e l s e {

s1 = quickTwoSum ( s1 , t3 , s2 ) ;
i f ( s2 != 0 . 0 )

s2 = quickTwoSum ( s2 , t4 , s3 ) ;
e l s e

s1 = quickTwoSum ( s1 , t4 , s2 ) ;
}

}
e l s e {

s0 = quickTwoSum ( s0 , t2 , s1 ) ;
i f ( s1 != 0 . 0 ) {

s1 = quickTwoSum ( s1 , t3 , s2 ) ;
i f ( s2 != 0 . 0 )

s2 = quickTwoSum ( s2 , t4 , s3 ) ;
e l s e

s1 = quickTwoSum ( s1 , t4 , s2 ) ;
}
e l s e {

s0 = quickTwoSum ( s0 , t3 , s1 ) ;
i f ( s1 != 0 . 0 )

s1 = quickTwoSum ( s1 , t4 , s2 ) ;
e l s e

s0 = quickTwoSum ( s0 , t4 , s1 ) ;
}

}
re turn f l o a t 4 ( s0 , s1 , s2 , s3 ) ;

}

Fig. 6. Cg implementations of a qf128 renormalization function.

f l o a t 4 q f a d d ( f l o a t 4 a , f l o a t 4 b ) {

f l o a t 4 s , e r r ;
/ / We e v a l u a t e 4 twoSums i n p a r a l l e l
s = qf twoSum ( a , b , e r r ) ;
f l o a t c0 , c1 , c2 , c3 , c4 , e r r 1 , e r r 2 , e r r 3 , e r r 4 ;
c0 = s . x ;
c1 = twoSum ( s . y , e r r . x , e r r 1 ) ;
c2 = threeSum ( s . z , e r r . y , e r r 1 , e r r 2 , e r r 3 ) ;
c3 = threeSum ( s . w, e r r . z , e r r 2 , e r r 4 ) ;
c4 = threeSum ( e r r . w, e r r 3 , e r r 4 ) ;

re turn q f r e n o r m a l i z e ( c0 , c1 , c2 , c3 , c4 ) ;
}

Fig. 7. Cg implementation of a qf128 add-function. In addition to the
twoSum, there are multiple threeSum functions taking different numbers of
inputs and producing different numbers of outputs.
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slowdown, according to Hida), but gives

a⊕ b = (1 + δ)(a + b), with |δ| ≤ 2εqf128 (13)

Multiplication, shown in Fig. 8, requires additional n-Sum
functions. The 4 × 4 product terms can be simplified by using
single-precision multiplication when error terms will be too small
for the representation.

Division can be computed using an iterative long-division
method followed by a renormalization of the quotient terms
(Hida [17]); the current Cg implementation instead uses Newton-
Raphson iteration and exploits Karp’s methods for reducing the
necessary precision at each step.

C. Compilation Issues vis-a-vis the Cg Language

Cg 1.5 vs. Cg 2.0 (not available on Cg website, only with
NVidia OpenGL SDK). Geometry programs and advanced frag-
ment program capabilities are only available on Geforce 8800
and equivalent Quadra cards, and require Cg 2.0 to access the
advanced features. (Cg 2.0 is not currently [xxAT] posted on the
NVidia Cg developer’s page, but can downloaded bundled with
their most recent OpenGL SDK.) Cg 1.5 allows limited extended
precision computation for df64 primitives including floating-
point division and square-root (Mandelbrot set example), but
precision is not adequate for computation of series summations
for trigonometric, exponential, and logarithmic functions. These
can be computed using Taylor series, Newton iteration, or Padé
approximation on the 8800 series cards.

Computation using qf128 representations requires 8800-level
hardware for correct renormalization. Cg 2.0 is required to make
use of the advanced machine instructions available in the ad-
vanced fragment program specifications, allowing robust looping,
branching, and arbitrary length fragment programs.

D. Case Study: a GPU Implementation of the Fast Fourier
Transform in df64

A discrete Fourier transform is a linear transformation of a
complex vector:

F(~x) = W~x

where, for complex ~x of length n, Wkj = ωkj
n , for

ωn = cos(2π/n)− i sin(2π/n)

= e−2πi/n.

“Fast” versions of this tranformation allow the matrix product to
be computed in O(n log n) operations rather than O(n2), and play
pivotal roles in signal processing and data analysis.

A general discussion of FFTs on GPU hardware can be found
in Moreland et al. [32]. A discussion of issues involved in parallel
computation of FFTs is Bailey [33]. The GAMMA group at
UNC-Chapel Hill has released the GPUFFTW library for single-
precision FFTs on real and complex input [xxAT].

This implementation uses a transposed Stockham autosort
framework for the FFT; a discussion such methods is found
in Van Loan [34]. The Stockham autosort methods avoid bit-
reversal rearrangement of the data at the cost of a temporary
storage array (necessary for a GPU-based algorithm in any case)
and a varying index scheme for each of the ln n iterations. The
GAMMA group at UNC employ such a framework in their single-
precision GPUFFTW library.

A basic algorithm for a transposed Stockham transform is
shown in Fig. 8). This presentation uses a precomputed Wlong

vector containing the n − 1 unique Fourier-basis coefficients for
the transform. This was done in the GPU implementation to
avoid costly extended-precision trigonometric computations on
the fragment processors; for single-precision GPU transforms,
the difference between the texture-fetch of precomputed values
and the use of hardware-based sine and cosine functions for
direct call by fragment programs is negligible. This algorithm

Algorithm 8 Sequential Transpose Stockham Autosort FFT
Require: X is a complex array of power-of-two length n

Require: Wlong = [ω0
2 , ω0

4 , ω1
4 , ω0

8 , ω1
8 , ω2

8 , ω3
8 , ω4

0 , . . . , ω
n/2−1
n ]

1: procedure TS-FFT(X, n)
2: t ← log2 n

3: for q ← 1, t do
4: L ← 2q

5: L∗ ← L/2

6: r ← n/L

7: Y ← X

8: for k ← 0, r − 1 do
9: for j ← 0, L∗ − 1 do

10: τ ← Wlong[L∗ + j − 1] · Y [(k + r)L∗ + j]

11: X[kL + j] ← Y [kL∗ + j] + τ

12: X[kL + L∗ + j] ← Y [kL∗ + j]− τ

13: end for
14: end for
15: end for
16: return X . the DFT of the input
17: end procedure

can be implemented using a Cg fragment program to per-
form the inner two loops, storing the initial X vector as a
dataWidth*dataHeight RGBA32 floating point texture in
a framebuffer object (FBO), writing into a buffer in the FBO,
and ping-ponging between input and output buffers after each
of the log2n iterations of the outer loop. Algorithm 9 shows the
CPU support structure for a data-streaming GPU implementation;
Algorithm 10 shows the necessary work on the GPU. These
assume df64 format, with each pixel storing a single complex
value as four 32-bit floats: [realhi, reallo, imaghi, imaglo]. Mod-
ifications for qf128 make it simpler to use pairs of parallel images
containing real and imaginary components; a fragment program
can read from both input images and write to two output buffers,
or separate fragment programs can be run to compute the real
and imaginary results separately. (GPU systems can take a perfor-
mance hit for dual-buffer output from a single shader; this must be
weighed against the cost of running the fragment program twice.)
An implementation can ping-pong between pairs of read and write
buffers just as for the single-input, single-output buffer case. This
implementation achieves highest efficiency when it minimizes the
data load and readback to and from GPU; once loaded, data can
be kept in framebuffer objects (FBOs) on the GPU and available
for spatial and frequency domain operations with minimal bus-
traffic to and from the CPU. Appendix I contains C++ and Cg
code implementing these algorithms: Figure 9 shows the CPU-
side scaffolding code; Figure 10 shows the Cg fragment program.

If a precomputed Wlong vector is provided in an input texture,
the FFT can be computed on a 6800/7800/7900 card using an
fp40 profile under Cg 1.5. If direct-computation of the Fourier
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f l o a t 4 q f m u l t ( f l o a t 4 a , f l o a t 4 b ) {

f l o a t p00 , p01 , p02 , p03 , p10 , p11 , p12 , p13 , p20 , p21 , p22 , p30 , p31 ;
f l o a t q00 , q01 , q02 , q03 , q10 , q11 , q12 , q20 , q21 , q30 ;

/ / as below , can r e p l a c e 10 f u n c t i o n c a l l s w i t h 3 , u s i n g c o r r e c t s w i z z l i n g
p00 = twoProd ( a . x , b . x , q00 ) ;
p01 = twoProd ( a . x , b . y , q01 ) ;
p02 = twoProd ( a . x , b . z , q02 ) ;
p03 = twoProd ( a . x , b . w, q03 ) ;
p10 = twoProd ( a . y , b . x , q10 ) ;
p11 = twoProd ( a . y , b . y , q11 ) ;
p12 = twoProd ( a . y , b . z , q12 ) ;
p20 = twoProd ( a . z , b . x , q20 ) ;
p21 = twoProd ( a . z , b . y , q21 ) ;
p30 = twoProd ( a . w, b . x , q30 ) ;

p13 = a . y∗b .w;
p22 = a . z∗b . z ;
p31 = a .w∗b . y ;

f l o a t c0 , c1 , c2 , c3 , c4 , e r r E o u t H i , e r rEou tLo , e r rE2ou t H i , e r rE2outLo , e r r E 3 o u t ;

c0 = p00 ;
c1 = threeSum ( p01 , p10 , q00 , e r r E o u t H i , e r r E o u t L o ) ;
c2 = sixThreeSum ( p02 , p11 , p20 , q01 , q10 , e r r E o u t H i , e r r E2 ou tH i , e r r E 2 o u t L o ) ;
c3 = nineTwoSum ( p03 , p12 , p21 , p30 , q02 , q11 , q20 , e r rEou tLo , e r r E2ou tH i , e r r E 3 o u t ) ;
c4 = nineOneSum ( p13 , p22 , p31 , q03 , q12 , q21 , q30 , e r rE2outLo , e r r E 3 o u t ) ;

re turn q f r e n o r m a l i z e ( c0 , c1 , c2 , c3 , c4 ) ;
}

Fig. 8. Cg implementation of a qf128 multiplier.

TABLE II
GPU PRECISION FOR df64 FLOATING-POINT COMPUTATION. BOUNDS ARE IN ulps FOR 48 CONTIGUOUS SIGNIFICANT BITS. COMPARISONS ARE TO d64

CPU COMPUTATIONS PERFORMED ON df64-PRECISION VALUES

Operation Operand range G80 max |error| G80 RMS error

Addition [−1, 1] 1.1 0.12

Subtraction [−1, 1] 1.1 0.12

Multiplication [−1, 1] 2.5 0.33

Division [−1, 1] 4.1 0.48

Reciprocal [−1, 1] 3.1 0.40

Recip. sqrt (0, 1) 4.4 0.55

Square root [0, 1] 4.5 0.46

exp(x) [−1, 1] 10.6 1.7

ln(1 + x) [1, 2] 11.0 1.7

sin(x) [−π
2 , π

2 ] 7.8 0.94

cos(x) [−π
2 , π

2 ] 241.3 6.0

basis-coefficients is needed, an 8800 card and Cg 2.0 is required.

E. Timings and Accuracy of GPU-Based FFT Routines

[ Addendum (July 2009): Results from this section have been
deleted.]

The timing and accuracy tests were done on input vectors of
length 2m, for even values of m. This allowed the use of square
2m/2 × 2m/2 image-textures for data transfer and storage on the
GPU. (Since modern APIs allow non-square textures, it requires
only trivial modifications of the current code to allow odd power-
of-two vectors.) Timings were done on forward transformations of
complex-to-complex data. Precision experiments were made, as
per Bailey [33] by comparison of root-mean-square error (RMSE)
of pseudo-random complex vector component magnitudes and

phases with inverse transformations of their forward transforms:

RMSE =

√√√√ 1

2m

2m−1∑

i=0

[M(x[i])−M(x′[i])]2, (14)

where ~x′ = F−1(F(~x)) (15)

and M(a) = mag(a) or phase(a). (16)

Peak signal-to-noise ratios were also computed [xxAT]:

Peak s/n = 10 log10
I2
max

MSE
(17)

where MSE is the mean-square-error and Imax is the maximum
signal strength.

Computations of GFLOPs were made by dividing the time for a
single forward FFT by the 5m · 2m approximation of the floating
point operations required by the transpose Stockham algorithm
(see van Loan [34]).
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Algorithm 9 Sequential (CPU) Portion of Parallel Transposed
Stockham FFT
Require: I: a complex array of power-of-two length N ;

each element is a sequence of four 32-bit floats:
[realhi, reallo, imaghi, imaglo].

Require: RB, WB: n×m = N element GPU pixel-buffers
Require: Wlong an n×m texture storing the (N − 1) ω coeffi-

cients
1: procedure TS-FFT-CPU(I, N , n, m)
2: WB ← I . load data to GPU
3: t ← log2 N

4: for q ← 1, t do
5: L ← 2q

6: RB ↔ WB . swap buffers on the GPU
7: Framebuffer ← WB

8: data ← RB

9: Framebuffer ← TS-FFT-GPU(data, Wlong, L, N, m)
10: end for
11: return readback from WB (last output Framebuffer)
12: end procedure

1) Results using Precomputed Wlong Values: Tables
[DELETED] show timing and accuracy comparisons for
df64-based FFTs as described. Timings were made on two
platforms: an NVidia Geforce 8800 GT running on a 3.2 GHz
single-processor Pentium IV front-end; an NVidia 7900go [xxAT]
running on a Centrino Duo front-end. Both platforms used the
Windows XP operating system with the Intel C++ 9.0 compiler;
the NV7900 vector hardware code was compiled under Cg 1.5;
the NV8800 scalar hardware code was compiled under Cg 2.0.

Timing and accuracy comparisons were against d6464 trans-
posed Stockham FFTs implemented on the CPU on the respective
front-end machines. While the sequential FFT code was not
heavily optimized, neither was the GPU code: a radix-4 imple-
mentation as described in Bailey [33] could be expected to give
a 2x to 4x improvement in runtime and potential improvements
in accuracy as well.

2) Results using Direct Computation of W jk
L Values: Table

[DELETED] shows similar timings and accuracy to the above,
using direct call to the extended-precision df64 sine-cosine func-
tion on the NV8800 GPU. While these results produce marked
slowdowns over the use of pre-computed values, they illustrate the
accuracy of the library functions and their usefulness in situations
that might require few calls.

APPENDIX I
C++ AND CG IMPLEMENTATION OF THE TRANSPOSED

STOCKHAM FFT

Fig. 9 and Fig. 10 present examples of C++ and Cg implemen-
tations of the texture-based streaming version of the transposed
Stockham FFT.
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Algorithm 10 Streaming (GPU) Portion of Parallel Transpose
Stockham FFT
Require: input as described above in Alg. 9
Require: integer texture coordinates (cx, cy) of the fragment

1: procedure TS-FFT-GPU(data, Wlong, L, N, m)
2: R ← N/L

3: L∗ ← L/2

4: i ← cym + cx . array index in I of fragment
5: k ← i/L

6: j ← i− Lk

7: if j ≥ L∗ then . distinguish j < L∗ from j > L∗

8: j ← j − L∗

9: sτ = −1.0 . sign multiplier for τ

10: else
11: sτ = 1.0

12: end if
13: d1 ← L∗ + j − 1 . index of ω in Wlong
14: ω ← lookup(Wlong, d1/m, d1 mod m)

15: d2 ← kL∗ + R + j

16: Y ← lookup(data, d2/m, d2 mod m)

17: τ = sτωY

18: d3 ← kL∗ + j

19: X ← lookup(data, d3/m, d3 mod m)

20: return X + τ

21: end procedure
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void TransStockhamFFT : : u p d a t e ( )
{

myFBO . Bind ( ) ;
g l V i e w p o r t ( 0 , 0 , da taWidth , d a t a H e i g h t ) ;

r eadID = 0 ;
w r i t e I D = 1 ;
g l B i n d T e x t u r e (GL TEXTURE RECTANGLE ARB ,

tex ID [ w r i t e I D ] ) ;

glTexSubImage2D (GL TEXTURE RECTANGLE ARB ,
0 , 0 , 0 ,
da taWidth , d a t a H e i g h t ,
GL RGBA, GL FLOAT , i n p u t I m ) ;

i n t N = da taWid th∗ d a t a H e i g h t ;
i n t T = i n t L o g 2 (N ) ;
f l o a t L = 1 ;
f l o a t R = N;
f o r ( i n t q = 1 ; q <= T ; q ++) {

i n t temp = readID ;
readID = w r i t e I D ;
w r i t e I D = temp ;
L ∗= 2 ;
R /= 2 ;

g lDrawBuf fe r ( f r a m e B u f f e r s [ w r i t e I D ] ) ;

cgGLBindProgram ( t r ansS tockhamFP ) ;
c g G L E n a b l e P r o f i l e ( g c g P r o f i l e ) ;

c g G L S e t T e x t u r e P a r a m e t e r ( texParam ,
t ex ID [ readID ] ) ;

c g G L En ab l e Tex t u r e Pa ra me t e r ( texParam ) ;
c g G L S e t T e x t u r e P a r a m e t e r ( wLongParam ,

t ex ID [ 3 ] ) ;
cg GL E n ab l eT e x tu r e Pa ra me t e r ( wLongParam ) ;
cgGLSe tPa rame te r1 f ( fwdFFTParam , 1 . 0 f ) ;
cgGLSe tPa rame te r4 f ( LRNIParam , L , R ,

( f l o a t ) N,
( f l o a t ) da t aWid th ) ;

g l B e g i n (GL QUADS ) ;
{

g lTexCoord2f ( 0 , 0 ) ;
g l V e r t e x 2 f ( 0 , 0 ) ;
g lTexCoord2f ( da taWidth , 0 ) ;
g l V e r t e x 2 f ( 1 , 0 ) ;
g lTexCoord2f ( da taWidth , d a t a H e i g h t ) ;
g l V e r t e x 2 f ( 1 , 1 ) ;
g lTexCoord2f ( 0 , d a t a H e i g h t ) ;
g l V e r t e x 2 f ( 0 , 1 ) ;

}
glEnd ( ) ;
c g G L D i s a b l e T e x t u r e P a r a m e t e r ( texParam ) ;

}

c g G L D i s a b l e P r o f i l e ( g c g P r o f i l e ) ;
F r a m e b u f f e r O b j e c t : : D i s a b l e ( ) ;

}

Fig. 9. CPU-side code for the GPU-based FFT
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# i n c l u d e "extPrecision.cg"

f l o a t 4 mainTransStockham ( f l o a t 2 c o o r d s : TEX0 ,
un i fo rm samplerRECT t e x t u r e ,
un i fo rm samplerRECT Wlong ,
un i fo rm f l o a t FWDFFT,
un i fo rm f l o a t 4 LRNI ) : COLOR

{
i n t locX = ( i n t ) c o o r d s . x ;
i n t locY = ( i n t ) c o o r d s . y ;

i n t L = ( i n t ) f l o o r ( LRNI . x ) ;
i n t R = ( i n t ) f l o o r ( LRNI . y ) ;
i n t N = ( i n t ) f l o o r ( LRNI . z ) ;
i n t IMAGESIZE = ( i n t ) f l o o r ( LRNI .w ) ;

i n t L S t a r = L / 2 ;
i n t i = locY∗IMAGESIZE + locX ;
i n t k = i / L ;
i n t j = i − L∗k ;

f l o a t t a u M u l t = 1 . 0 f ;
i f ( j >= L S t a r ) {

j = j − L S t a r ;
t a u M u l t = −1.0 f ;

}

i n t dex = L S t a r + j − 1 ;
i n t dex1 = dex / IMAGESIZE ;
i n t dex2 = dex − IMAGESIZE∗dex1 ;
f l o a t 4 W = texRECT ( Wlong ,

f l o a t 2 ( dex2 , dex1 ) ) ;

dex = k∗L S t a r + j ;
dex1 = dex / IMAGESIZE ;
dex2 = dex − IMAGESIZE∗dex1 ;
f l o a t 4 s r c = texRECT ( t e x t u r e ,

f l o a t 2 ( dex2 , dex1 ) ) ;

dex += R∗L S t a r ;
dex1 = dex / IMAGESIZE ;
dex2 = dex − IMAGESIZE∗dex1 ;
f l o a t 4 Y = texRECT ( t e x t u r e ,

f l o a t 2 ( dex2 , dex1 ) ) ;

f l o a t 4 t a u P l a i n = c d f 6 4 m u l t (Y, W) ;
f l o a t 4 t a u = t a u P l a i n ∗ t a u M u l t ;

f l o a t 4 d s t = c d f 6 4 a d d ( s r c , t a u ) ;

i f (FWDFFT == −1.0 && L == N)
d s t /= N;

re turn d s t ;
}

Fig. 10. Cg code for the GPU fragment code. Slight speedups are
achievable by replacing conditional branches with calls to separate fragment
programs. Counterintuitively, elimination of the floor() functions produces
slight slowdowns. (This is with the Cg 1.5 compiler. See discussion of Cg
1.5 vs. 2.0 differences in Sec. III-C
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