
Fast Mersenne Prime Testing on the GPU

Andrew Thall
Dept. of Mathematics and Computer Science

Alma College
614 W. Superior St.

Alma, MI 48801 USA
thall@alma.edu

ABSTRACT
The Lucas-Lehmer test for Mersenne primality can be effi-
ciently parallelized for GPU-based computation. The gpuLu-

cas project implements an irrational-base discrete weighted
transform approach (IBDWT) using balanced-integers, non-
power-of-two transforms, and carry-save radix representa-
tions. gpuLucas uses the CUDA programming language and
requires the double-precision floating point capabilities of
recent GPUs. Results show up to 7× speedups over bench-
mark averages for optimized sequential code and factor-of-
two speedups over CUDALucas, another GPU-based Lucas-
Lehmer tester developed independently and with a differ-
ent optimization strategy. This work demonstrates tech-
niques for implementing GPU-based number theoretic algo-
rithms on very large numbers, including fast multiplication,
prefix-sum-based carry-propagation, and the use of carry-
save arithmetic with balanced integers. The work presents
timing profiles of convolution-based integer multiplication
based on the IBDWT, in particular for non-power-of-two
transformations, and establishes the usefulness of the soft-
ware as a GPU benchmarking application and as a platform
for large-integer and polynomial experimentation.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical soft-
ware—Parallel and vector implementations; I.3.1 [Computer
Graphics]: Hardware architecture—Graphics processors

General Terms
Algorithms, Performance

Keywords
CUDA, discrete weighted transforms, fast carry propaga-
tion, GPGPU, IBDWT, Lucas-Lehmer test, Mersenne primes,
multiprecision arithmetic, parallel carry-save arithmetic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-4, March 05-05 2011, Newport Beach, CA, USA
Copyright 2011 ACM 978-1-4503-0569-3/11/03 ...$10.00.

1. INTRODUCTION AND OVERVIEW
Mersenne prime testing has a long history in numerical

computing, from the 1948 work of Newman and Turing on
the Manchester Mark I, to the 1952 work by Robinson at
UCLA that found the first machine-proven Mersenne prime,
2521 − 1. Mersenne primes—prime numbers of the form
Mp , 2p − 1, for p prime—have interesting mathematical
properties but little practical value; nonetheless, they re-
main popular computational targets on new generation of
computer hardware and are the subject of a massive dis-
tributed online search, the Great Internet Mersenne Prime
Search (GIMPS). One practical use of the Mersenne prime
testing software, rather than the numbers themselves, has
been for benchmarking and stress-testing new computational
hardware, and GIMPS maintains a huge database of profiled
machines on their website [21].

Primality testing of Mersenne numbers is made practical
by the Lucas-Lehmer test, a simple but computationally in-
tensive algorithm that requires repeated squaring and reduc-
tion modulo Mp of p-bit numbers. With search exponents
currently greater than 40-million bits, checking a large ex-
ponent is a test of speed and accuracy for multiprecision
arithmetic.

Modern graphics processing units (GPUs), as massively-
parallel, shared-memory architectures, are ideal platforms
for the Lucas-Lehmer test. The gpuLucas project has par-
allelized the Lucas-Lehmer test for efficient GPU using an
irrational-base discrete weighted transform (IBDWT) and
balanced-integer approach derived from the work of Crandall
and Fagin [1]. The implementation uses the CUDA pro-
gramming language and requires the double-precision float-
ing point capabilities of current (ca. 2009) GPUs: specifi-
cally, the Fermir-class processors from NVIDIA Corp. The
work uses the CUFFT library for non-power-of-two FFTs,
and eliminates the need for parallel carry-addition by us-
ing carry-save arithmetic on a variable word-size, balanced-
integer representation.

Section 1 describes the Lucas-Lehmer test and the IBDWT-
method for multiplication modulo Mp. This is followed by
a description of a GPU-suitable parallel version, and a dis-
cussion of the gpuLucas implementation and its optimiza-
tion issues. Example timings and code-profiling data are
presented, comparing gpuLucas with the GIMPS Prime95

sequential code and with CUDALucas, another GPU-based
implementation developed independently by S. Yamada as
a port of existing sequential code. The discussion section
compares the optimization strategy of the two GPU-based
tests, discusses further improvements to the current project,

and concludes with ongoing work and promising directions
for further research.

1.1 The Lucas-Lehmer Test
There are only 47 known Mersenne primes at the time

of this publication, the largest being M43,112,609. Testing
the primality of Mersenne numbers is made computation-
ally tractable by the deterministic Lucas-Lehmer test [10],
expressed algorithmically in Alg. 1. This algorithm follows

Algorithm 1 The Lucas-Lehmer Test

Require: p > 2, a prime number for which Mp , 2p − 1 is
the Mersenne number to be tested

1: procedure Lucas-Lehmer-Test(p)
2: s0 ← 4 ◃ Initialize first in sequence
3: for i← 1, p− 2 do
4: si ← (s2i−1 − 2) mod Mp

5: end for
6: return prime if sp−2 = 0, else not prime
7: end procedure

from Lehmer’s proof, extending a result by Lucas, that 2p−1
is prime if and only if it divides the (p − 1)th term of the
series {4, 14, 194, 37634, . . . , Sk, . . .}, where Sk = S2

k−1 − 2.
This is made computationally practical by the trivial corol-
lary that the product can be reduced modulo 2p−1 following
each iteration without altering the divisibility test of the fi-
nal product.
Practical testing of large values thus requires p− 2 squar-

ings and modular reductions of a p-bit number. The re-
duction mod Mp can be done by an O(p) shift-and-add
operation, but the multiplication requires a fast algorithm
such as the Schönhage-Strasse method [16], treating multi-
plication as convolution and using Fast Fourier transforms
to accomplish a p-bit multiply in O(p log p log log p) oper-
ations rather than O(p2). A Mersenne number Mp can
therefore be tested with O(p2 log p log log p) bit-operations,
or O(pN logN) arithmetic operations for an N -word radix
representation.

1.2 IBDWT-based Lucas-Lehmer Testing
Transform-based multiplication of multiprecision integers

x and y typically requires zero-padding arrays of <= N ,
base-W digits to a length > 2N large enough to hold their
product, then transforming the arrays, typically with an
FFT, doing a component-wise product, and then doing an
inverse FFT. This gives a correct polynomial-product; for
integers, the base-W radix-representation is restored by a
carry operation from low-order digits to highest. Concep-
tually, each digit in the convolution product holds an entire
column-sum for a digit computed using long multiplication,
with a final carry to restore the base. Thus, each digit must
have enough storage to hold a product term, on the order of
NW 2. When using a floating point transform like the FFT,
there also has to be enough precision to avoid rounding er-
rors.
Efficient sequential implementations of the Lucas-Lehmer

test use a variant of this that avoids zero-padding and does
the multiplication moduloMp directly. This is the irrational-
base, discrete weighted transform method of Crandall and
Fagin [1]. Its effective use in Lucas-Lehmer testing rests
on four concepts: (1) balanced-radix representations, (2)

variable-base digit representations, (3) weighted cyclic con-
volutions and discrete weighted transforms (DWTs), and (4)
irrational numeric bases.

Balanced radix representations allow signed digit values;
thus, for a base-W digit of the number x, we may have digit
values xj in the range −W/2 ≤ xj < W/2. This greatly re-
duces the error bounds on integer multiplication using FFTs;
intuitively, this is because each“column-sum”in the convolu-
tion product has both positive and negative summands and,
while its magnitude is bounded by N(W/2)2, its expected
value is much less.

Variable base representations allow each digit xj to have
its own base Wj . This is strange but well-defined; for a
balanced, symmetric-even representation, each digit xj will
be in the range −Wj/2 ≤ xj < Wj/2.

The use of irrational-base digits and the Weighted Dis-
crete transform is beautiful but lengthy to describe; for a
mathematical discussion, see Crandall et al. [2]. In practice,
to do a multiplication modulo Mp, we choose an FFT signal-
length N < p (see Sec. 3.1.1) and represent our numbers as
integers in a variable base representation

x =

N−1∑
j=0

xj2
⌈pj/N⌉, (1.1)

with base Wj = 2bj and the number of bits for digit xj−1

being

bj = ⌈pj/N⌉ − ⌈p(j − 1)/N⌉. (1.2)

To perform a product xy (mod Mp), given x and y in this
representation, we multiply each component xj and yj by the
corresponding aj-component of a weight-signal a of length
N . This is defined by

aj = 2⌈pj/N⌉−pj/N (1.3)

approximated by floating-point numbers in the interval [1, 2).
This permits x and y to be represented by integer compo-
nents xj and yj in base Wj , with the the number of bits
in Wj being either ⌈p/N⌉ or ⌊p/N⌋, with the floating-point
terms aj giving giving a componentwise correction weights
for an irrational-digit, irrational-base representation. The
modular product can then be computed using a weighted
transform in place of an ordinary Fourier transform, express-
able in terms of the latter as DWT(N,a)x = DFT(N)ax. This
lets the modular product be computed using ordinary dis-
crete Fourier transforms as

xy (mod Mp) = a−1DFT−1
(N)[(DFT(N)ax)(DFT(N)ay)].

The IBDWT enables Alg. 2 for integer multiplication mod-
ulo Mp. The algorithm may use standard or balanced digits
and can serve in the inner loop of a Lucas-Lehmer test. The
arithmetic complexity of the inner loop remains O(N lgN),
but the elimination of the O(N) modular reduction, the re-
duction in the run length N , and the error reduction from
using a balanced representation combine to produce superior
runtime constants, making these methods markedly superior
to more general large-integer multiplication and modular di-
vision algorithms such as those used in the GMP libraries [3].

2. GPU-BASED LUCAS-LEHMER TESTING
Efficient parallelization of an IBDWT-based Lucas-Lehmer

test requires two algorithmically fast operations: (1) par-
allel multiplication of large integers modulo Mp, and (2)

Algorithm 2 Multiplication of x and y modulo Mp.
(Crandall)

1: Choose run length N < p, establishing bit-sizes bj ac-
cording to Eq. 1.2, components of the weight signal a by
Eq. 1.3, and representations x = {xj},y = {yj} accord-
ing to Eq. 1.1, zero-padding to N digits.

2: X ← DWT(N,a)x and Y ← DWT(N,a)y.
3: Z ← XY, componentwise.
4: z← DWT−1

(N,a)Z.
5: z← round(z).
6: Adjust the digits {zn} to the variable digit representa-

tion based on bj bits per digit.

parallel radix-restoration of digit values from convolution
products. Any parallel system capable of accelerating the
FFTs required by the Lucas-Lehmer test iterations may give
speedups over sequential platforms. Massively parallel sys-
tems such as vector machines have been attractive targets
for Lucas-Lehmer implementations, and some of the first
results reported by Crandall and Fagin for the IBDWT-
method were of timings on Cray supercomputers.

2.1 Prior and Concurrent Work
GPUs were demonstrably capable of accelerating FFTs

as early as 2003 (Moreland et al. [11]) , with further work
by Govindaraju et al. [4] [5], and with extended-precision
double-float FFTs by Thall in 2006 [19].
The work by Thall was the first reported parallel Lucas-

Lehmer test for the GPU; it used an autosorting, transposed-
Stockham transform, implemented using extended precision
libraries needed for non-trivial Mp values. It used the Cg-
shading language for the GPU computations and extended-
precision libraries from prior work [18]. The Cg-based Lucas-
Lehmer code served as proof-of-concept on the use of the
GPU for large-integer multiplication, implementing a näıve
Lucas-Lehmer design with fixed-base, standard representa-
tion integers, with modular reduction via parallel-shift-and-
add, and parallel carry-propagation for radix restoration via
parallel prefix-sum. It failed to run faster than well-written
sequential code for a plethora of reasons:

1. the lack of IEEE compliant double precision hardware,
instead requiring software-implemented double-floats;

2. the need under Cg and the OpenGL API that each
computational step be a separate “rendering pass” by
a fragment-shader on data coded into image-texture
memory;

3. the limitations on loops and branching under Cg;

4. GPU memory accessible solely through texture look-
ups and allowing no scattered writes;

5. non-IEEE-754-compliant floats and problematic com-
pilation: e.g., compiler optimizations that change com-
putational results in unpredictable ways.

Modern architectures, and GPGPU languages such as CUDA
and OpenCL, have made recent GPUs much more versatile
platforms for numerical computing in general, and all of the
above problems are non-issues on present systems.
The CUDALucas program of Shoichiro Yamada has been de-

veloped concurrently and independently of the present gpu-

Lucas project. This is a sophisticated implementation of the

IBDWT on the GPU, done as a port of the highly optimized
sequential program MacLucasFFTW. Comparison timings and
discussion of implementation differences will be presented
below; in general, CUDALucas produces Lucas-iteration tim-
ings within a factor of two of slower than gpuLucas, due to
its inability to perform non-power-of-two transforms. There
has been no published work on it, but details have been
provided directly [22] and in discussions on the mersennefo-
rum.org site.

2.2 A Parallel IBDWT-Based Lucas-Lehmer
Efficient Lucas-Lehmer testing on the GPU requires the

elimination of all large data transfers between host and GPU;
further, computations should preserve locality for all oper-
ations besides the FFTs themselves. Alg. 3 parallelizes the
balanced-integer-IBDWT approach with this in mind. At

Algorithm 3 GPU-Parallel-Lucas-Lehmer-Test(Mp)

Require: p > 2, a prime for which Mp , 2p − 1 is to be
tested

1: Choose run length N < p, establish bit-sizes bj accord-
ing to Eq. 1.2.

2: Allocate and initialize device arrays for weights A,Ainv

and for Bits, by Eq. 1.3.
3: Allocate device arrays S,Sllint,D,C of size N storing

int32, int64, double, and complex-double values respec-
tively

4: S[0]← 4,S[n > 0]← 0.
5: for i← 1, p− 2 do
6: D← AS ◃ componentwise product
7: C← realToComplexFFT(N)(D)

8: C← C2 ◃ componentwise product
9: D← ComplexToRealFFT(N)(C)
10: Sllint ← roundToNearest(AinvD/N) ◃

componentwise rounding
11: S← rebalanceToCarrySave(Sllint,Bits) ◃ limited

carry propagation
12: end for
13: S← rebalanceToBalancedInt(S,Bits) ◃ full carry

propagated
14: return prime if S = 0, else not prime

runtime, the host program allocates storage and initializes
variables, then executes the for-loop in Step 5. All opera-
tions within this loop, Steps 6–11, are data-parallel opera-
tions on the input arrays, and all but the forward and reverse
FFTs operate in parallel on a single digit and at most a few
of its near neighbors.

2.3 Time and Work Complexity
Regarding only the non-trivial operations within the loop,

Steps 6, 8, and 10 are all O(1) under EREW PRAM assump-
tions, or O(N/P) on P processors, consisting of operations
on individual words or identically indexed words in multiple
arrays.

Steps 7 and 9, the FFTs, can be accomplished in O(lgN)
time under EREW PRAM assumptions, or O(N/P lgN)
time on a physical system. Efficient implementation must
consider the size-speed tradeoffs of non-power-of-2 FFTs
that may be available; architecture and library specific pro-
filing is necessary to determine the most efficient lengths N
that give results within acceptable error bounds. (See below,

Sec. 2.4.)
In Step 11, carry-addition to restore digit-radices can be

parallelized via a parallel prefix-sum (scan) operation using
a ⊕gpk function over a per-digit generate-carry/propagate-
carry/kill-carry evaluation. This can be done with O(lgN)
time complexity and optimal O(N) work under an EREW
PRAM model [8] but is problematic for two reasons: (1) in
Lucas-Lehmer testing, parallel carry-adders are “overkill”:
long carry-propagation-chains are very rare in high-radix
arithmetic for typical products; prefix-sums take O(lgN)
time when only a fewO(1) per digit ripple carries are needed;
and (2) ⊕gpk is problematic for balanced integers; it is no
longer an associative function and therefore not subject to
prefix-scan evaluation. Although the propagation can be di-
vided into separate add-with-carry and subtract-with-borrow
scans, this is inelegant and doubly overkill.
A better solution for applications such as Lucas-Lehmer

testing is to not resolve the carries at all, leaving the large
integer in a carry-save representation. For a variable base
representation for x, each digit xj should be in the range
−Wj/2 ≤ xj < Wj/2. However, if any xj is outside of its
range—representing an unpropagated borrow or carry—the
digits still represent the same x; further, they still give cor-
rect convolution products, so long as the individual product
terms are not too large for the precision of the floating-point
variables in the FFT. Further, convolution product terms,
assuming random inputs, are still distributed about a mean
of zero for each digit, and there is no observable increase in
the error bounds. Shift-based modular reduction becomes
problematic, but an IBDWT-approach eliminates the need
for this in any case.
The balanced, carry-save representation proved a very

effective technique in parallel Lucas-Lehmer implementa-
tion. While a sequential implementation requires an O(N)
scan in any case for digit-adjustment, the use of carry-save
arithmetic eliminates the need for any non-local computa-
tion other than the Fourier transforms. The computational
cost over O(p) iterations is therefore O(p(logN +O(1))), or
O(pN/P logN + pN/P) for P processors.

2.4 Error Bounds on DWT-Based Convolution
Average and worst-case error-bounds for FFTs, DWTs,

and multiplication modulo Mersenne numbers were calcu-
lated by Percival [14]; the findings showed that requiring
FFT multiplication to be provably immune to fatal rounding
increases runtime by under a factor two versus runlengths
N tuned to the average case. Percival gave experimental re-
sults showing that the range of maximum errors for multipli-
cations of random inputs is small and predictable, although
atypical inputs may produce much larger errors.
Because of the predictability of the observed average er-

ror, it is possible to make the selection of runlength N based
on short test-runs across a range of possible lengths; for a
computation that may take hours or days, this adds a neg-
ligible amount to the runtime, and acceptable values may
vary based on unpredictable factors, including new releases
of FFT libraries. This may be done on a case-by-case basis,
but test-runs are short enough to allow ranges of Mersenne
numbers testable by transforms of a given length to be tab-
ulated.
Runtime error testing is also used, most commonly by

checking the maximum per-digit rounding difference required
to restore the unweighted floating point product-digit to an

cudaMemcpy(A, host A, sizeof(double)∗SIZE,
cudaMemcpyHostToDevice);

cudaMemcpy(Ainv, host Ainv, sizeof(double)∗SIZE,
cudaMemcpyHostToDevice);

cudaMemcpy(bpw, host bpw, sizeof(unsigned char)∗SIZE,
cudaMemcpyHostToDevice);

loadValue4ToFFTarray<<<GRID, BDIM>>>(signal d,
SIZE);

for (int iter = 2; iter < TESTP; iter++) {
cufftExecD2Z(signal d, signal z);
complexPointwiseSqr<<<FFTGRID,

BDIM>>>(signal z, SIZE/2 + 1);
cufftExecZ2D(signal z, signal d);
invDWTprodMinus2<<<GRID, BDIM>>>(signal ll,

signal d, Ainv, SIZE);
llint2BALIrrInt<<<GRID, BDIM>>>(iArr, hiArr,

signal ll, bpw, SIZE);
if (iter < TESTP − 1)

loadIntToDoubleIBDWT<<<GRID,
BDIM>>>(signal d, iArr, hiArr, A, SIZE);

}
// on loop exit, rebalance iArr by full add−with−carry of

hiArr. This is the final Lucas−Lehmer product.

Figure 1: CUDA code-outline of main Lucas-Lehmer
loop of gpuLucas. The code for convolution-error test-
ing has been omitted.

integer value. Errors becoming more likely to have occurred
when absolute distance of a digit from its nearest integer
approaches 0.5. A heuristic threshold is set, and results are
accepted only as probabilistic until confirmed by tests with
other runlengths.

3. THE GPULUCAS IMPLEMENTATION
The gpuLucas software is written in the CUDA program-

ming language from NVIDIA Corporation, and currently
runs only on Fermir class NVIDIA hardware, with testing
on GTX 480 and Tesla 2050 GPUs. The following discussion
assumes basic knowledge of CUDA programming and the
associated Fermi GPU memory structure (global, shared,
constant memory, warps, and bank conflicts, etc.); on-line
reference materials are plentiful; recommended are the offi-
cial documentation [13], CUDA 3.2 SDK example code, the
GPU Gems series [12], as well as recent texts by Sanders
and Kandrot [15] and by Kirk and Hwu [9].

A code outline of the main test-loop is shown in Fig. 1.
It is a straightforward implementation of Alg. 3, using li-
brary calls to CUFFT for double-to-complex and complex-
to-double FFTs and custom kernels for the rest. The overall
optimization strategy was fourfold:

1. eliminate any array copies or host operations on GPU
data

2. keep data operations as local as possible to within each
data array, using shared memory within thread-blocks
for inter-thread communication

3. use block-level synchronization (via __syncthreads()

and global synchronization (via separate kernel calls)
as seldom as possible.

4. use integer arithmetic and bitwise operations for exact
arithmetic.

In terms of speed, modern GPUs remain double-precision-
challenged; while the recent Fermi-architecture GPUs are
much better in this regard, 32-bit int and float operations
are still substantially faster than 64-bit double performance.
Thus, it is still faster to convert to integer for most opera-
tions, using double-precision only for the weighted multiplies
and the FFTs. Single-precision floating point is faster than
integer for most operations, but bitwise Boolean operations
allow exact arithmetic for all but the DWT and the rounding
of the resulting product terms.

3.1 Implementation and Optimization
The project made use of open-source libraries for sev-

eral routines. The CUDPP library provides efficient CUDA
parallel-prefix scan operations as described by Harris, Sen-
gupta, and Owens [6]; the parallel-prefix code was modified
for parallel carry-adds and borrows, as described below in
Sec. 3.1.6, but in final implementation was used only for
max operations over convolution rounding errors. The com-
putation of weights for the IBDWT was done on the host in
extended precision using the qd library of Hida et al. [7].

3.1.1 Selection of runlength N and word-sizes
The current code, in common with GIMPS Prime95, uses

non-power-of-two transforms. This eliminates sharp jumps
in runtime when changing from transforms of length 2m to
2m+1. Thus, to test M43,112,609, which is too large for a
221 transform, one can use N = 221 + 219 = 219 ∗ 5 instead
of N = 222, giving a nearly 2× speedup. Modern libraries
such as FFTW and CUFFT employ mixed-radix methods
and can handle powers-of-small prime transformations very
efficiently. CUFFT allows runlengths N = 2a ∗3b ∗5c ∗7d; as
part of this project, runlengths have been profiled and tabu-
lated for different products of powers, and maximum accept-
able word-sizes have been computed for each. The current
gpuLucas now chooses a runlength for acceptable word-sizes
based on known FFT timings for possible choices of N .

3.1.2 Computation of digit bit-lengths
An array b of bit-lengths for each radix position is pre-

computed on the host processor according to Eq. 1.2. An
array of bit-vectors bpw is then created for each digit xj ,

bpw[j][i] =

{
1 if bj−i = ⌈p/N⌉
0 if bj−i = ⌊p/N⌋ (3.1)

This sets bit-i if digit xj−i has the higher bit-length, wrap-
ping as necessary to xN−(j−i) when j − i < 0. At most
six lower-order values may generate carries to any given xj

in the radix-rebalancing stage, given convolution products
stored as IEEE-754 double precision values and given min-
imum bits per digit (8, 9); i.e., no product digit can con-
tribute bits directly to more than six higher order terms. By
selecting N to generate the largest word-sizes that give con-
volution products storable in a double, prior terms needed
for a radix-restoration may be reduced to only 2 or 3.

3.1.3 Initialization of a and a−1

Because the weight-computation aj = 2⌈jp/N⌉−jp/N can
produce catastrophic cancelation when transform-size N is
not a power of two, weights are computed on the CPU in
double-double precision and then loaded to global memory.

3.1.4 Setting up the DWT and entering the main loop

Initially, the value 4.0 is loaded to signal_d[0], with the
rest of the N components set to zero, since 4 is balanced
and a0 = 1.0. On subsequent iterations, the FFT array is
initialized by carry-save values from the previous iteration,
which are multiplied componentwise by the weights aj . The
forward and inverse transforms are done by the CUFFT li-
brary calls, and the complex squaring by a kernel call to
compute the product on the 2N + 1 complex values.

Following the convolution,invDWTprodMinus2()multiplies
product terms componentwise by the Ainv weights, sub-
tracts 2 from the lowest, then rounds to the nearest long

long int and writes this to global memory. CUDA pro-
vides library functions for double2ll() in device code that
takes a rounding-mode parameter as an argument. A mod-
ified invDWTprodMinus2() is used when error terms need to
be computed, with additional code to do a parallel-prefix
scan of error terms to find the maximum.

3.1.5 Distributing convolution product digits to base-
Wj carry-save configuration

Base-reestablishment is done by llint2BALIrrInt(). This
is the most costly operation besides the FFTs—see profiling
data in the results section. There are separate routines for
different word-size pairs depending on how many previous
terms can carry to the current one; at runtime, a pointer
to the correct function is assigned and used for the entire
test. Some details from the (16, 17) case are shown below.
Product terms are loaded to shared memory, including three
extra terms that may carry in from the previous block and
with wrap-around from the final block to block 0. Once
loaded to shared memory, the correct bits from the current
and prior 3 terms are added, using the correct multipliers
and signs.

// get bits in current digits and preceding 3
unsigned char bperW = bpw[tid];
int isHi = bperW & 1;
const int BITS = LO BITS + isHi;
const int BASE = BASE LO << isHi;
const int MASK = BASE − 1;

// mask off and add contribution of this and preceding digits’
// values to current digit’s rebalanced value
int shiftBits = 0;
int sum = signs[tba + 3]∗(digits[tba + 3] & MASK);
for (int i = 1; i < 3; i++) {

bperW >>= 1;
isHi = bperW & 1;
shiftBits += LO BITS + isHi;
sum += signs[tba + 3 − i]∗((digits[tba + 3 − 1] >>

shiftBits) & MASK);
}

Finally, a partial balanced-integer rebalancing is done, com-
puting carry or borrow out from current digit digit and writ-
ing the current digit to iArr and its carry to hiArr.

// do a partial rebalancing, computing carry or borrow out
from current digit

// and storing in hival
int HBASE = BASE >> 1;
int hival = 0;
if (sum < −HBASE)

hival = −((−sum + HBASE) >> BITS);
else if (sum >= HBASE)

hival = (sum + HBASE) >> BITS;

// writes to global memory
iArr[tid] = sum − (hival << BITS);
hiArr[tid] = hival;

}

No further rebalancing is done following this stage; the hiArr
carry or borrow is simply added to the following iArr term
when the double array is loaded for the next iteration, leav-
ing the representation in a carry-save configuration.

3.1.6 Full Rebalancing by GPK-carry-addition
The current implementation uses no GPK-carry resolu-

tion in the main loop; they are used in the final rebalancing
Step 13, though mainly as an act of bravado; a single O(n)
linear scan on the CPU would work just as well. For applica-
tions requiring full carry-adds on very large integers, how-
ever, they are deterministic and faster than a CPU-based
sequential carry; the current code provides them for both
balanced and unbalanced representations, and also includes
fast-carry-based routines for conversion between the two.
The implementation of the GPK algorithm used modi-

fied routines from the open-source CUDPP library [6]. The
CUDPP_GPK function was added to the already defined ADD,

MULTIPLY, MIN, and MAX. The code modification was non-
trivial; the existing CUDPP codebase assumes a commuta-
tive scan-function and required careful modification of the
highly optimized code to ensure that the non-commutative
⊕gpk was correctly composited and applied to correctly or-
dered operands throughout the parallel scan. The CUDPP_GPK
function can be used equivalently for either carry-addition
or subtract-with-borrow, by modifying the test for setting
the {G,P,K} status prior to the scan.

4. RESULTS AND COMPARISONS

4.1 Target Platforms
Target platforms for the implementation were an NVIDIA

GTX 480 graphics card and a Tesla 2050 GPGPU device,
running on an Intel Core i7 CPU 940 host (2930 MHz) un-
der Windows 7. Both GPUs are Fermi architecture, giv-
ing CUDA capability 2.0: fairly IEEE-compliant double-
precision, 32-bit integers (and fast 64 bit extensions) with
bit operations, and atomic memory operations. The Tesla
has a slower CUDA clock and fewer processors, but has supe-
rior double-precision performance due to full enabling of the
processor; the GTX 480, designed as a high-end commod-
ity graphics card, opts for more CUDA cores and a higher
clock speed. In Lucas-Lehmer experiments, the two cards
are nearly even...the superior double precision throughput
sped the FFTs and high-precision multiplies and rounding,
while the faster clock and greater number of CUDA cores
decreased communication costs for the FFT and sped single
precision and integer computation.
The most recent NVIDIA drivers allow overclocking of

GPUs at the OS level; increasing the clock rate of the Tesla
2050 to equal that of the GTX produced results superior to
the less expensive card. (We also record GPU temperatures
in excess of 87◦C for the overclocked Tesla during a long run;
how healthy this is for the processor remains to be seen.)
All Tesla results below are processor overclocked to 1404

MHz, with ECC memory mode disabled.

4.2 CUDA Profiling
Table 1 shows kernel timing profile of representative run-

lengths using the NVIDIA Compute Visual Profiler 3.2.0.
The FFT library calls (divided into multiple kernel calls, in-
ternally) were most costly operations. The llint2BALIrrInt()
kernel, took the next longest, and the other expensive op-

CUDA kernel % of time % of time
or library calls N = 256K N = 8192K
cufftExecD2Z() and 64.7 (61.3) 68.0 (62.9)

cufftExecZ2D()

complexPointwiseSqr() 5.2 (5.8) 4.6 (5.6)
invDWTprodMinus2() 8.0 (8.8) 7.4 (8.8)
llint2BALIrrInt() 13.7 (14.7) 12.1 (13.9)
loadInt2DoubleIBDWT() 8.4 (9.2) 7.7 (9.2)

Table 1: Profiling gpuLucas for small and large convo-
lution lengths. Timings are on a GTX 480 and (in
parentheses) overclocked Tesla 2050.

p for Mp time N bases max ε
(sec) (lo, hi)

44497 4.2 4 K (10, 11) 1.6e-7
86243 8.1 8 K (10, 11) 1.5e-7
86243 8.1 4 K (21, 22) 2.5e-1

216091 20.3 16K (13, 14) 9.5e-6
216091 25.7 12K (17, 18) 3.6e-3
859433 136.4 64K (13, 14) 2.2e-5
859433 111.6 48K (17, 18) 7.8e-3

1257787 197.4 64K (19, 20) 8.6e-2
3021377 1237 (0.34 hr) 160K (18, 19) 5.4e-2
6972593 6410 (1.78 hr) 384K (17, 18) 3.7e-2

13466917 23069 (6.41 hr) 768K (17, 18) 2.5e-2
32582657 141998 (39.4 hr) 2048K (15, 16) 5.1e-3
32582657 125338 (34.8 hr) 1792K (17, 18) 2.3e-1
42643801 208300 (57.9 hr) 2304K (18, 19) 1.8e-1

Table 2: Sample execution timing for gpuLucas. Tim-
ings are for the overclocked Tesla 2050. Timing are
for the main loop of the Lucas-Lehmer test, and ig-
nore a small constant setup time.

eration being the loadInt2DoubleIBDWT with its double-
precision dependencies. As expected, with identical proces-
sor clock speeds (1402 GHz), the greater number of CUDA
cores on the GTX 480 led to better timings on the O(N/P)
operations, even the double-precision complexPointwiseSqr,
but for the FFTs, the Tesla made up for fewer processors
by the superior double-precision performance. The simi-
lar balance of operation timings between the N = 256K
and N = 8192K runlengths seems odd, but were confirmed
by independent timings of the CUFFT real-to-complex and
complex-to-real transforms, which scale linearly with N for
signal-lengths between 218 and 224.

4.3 Timings and Comparisons
Table 2 gives sample execution times for the testing of rep-

resentative Mersenne numbers. Given the ability to use non-
power-of-two runlengths and to fine-tune for higher base-
values, a few examples of the same Mp with different run-
lengths are shown. For small values of p, non-power-of-two
runlengths may make little difference or even be detrimen-
tal, but appreciable speedups are seen for larger p when
decreasing the runlength.

Table 3 gives timings for a single Lucas-Lehmer iteration
for different runlengths N , based on runs of gpuLucas and
CUDALucas on the test GPUs and GLucas and Prime95 on
the test host. GLucas shows its age as older sequential code,
cross-platform but used mainly for hardware stress-testing.

runlength ∼max. gpuLucas CUDALucas Glucas Prime95 Prime95
(K = 210) p for Mp (msec) 1 T, 1 core 8 T, 4 cores

1024 K 18M 2.20 (2.04) 2.74 (2.45) 51 14.4 5.6
2048 K 36M 4.46 (4.36) 4.43 (4.10) 104 29.2 10.3
2304 K 40M 5.05 (4.89) 124
2560 K 46M 5.81 (5.46) 143 37.3 14.5
3072 K 52M 7.13 (6.61) 169 46.0 17.5
3584 K 60M 8.18 (7.62) 211 54.3 19.4
4096 K 69M 9.11 (8.80) 9.04 (8.12) 225 61.4 21.8
4608 K 81M 10.41 (9.70) 268
5120 K 90M 11.85 (10.97) 303 85.8 28.9
6144 K 108M 14.57 (14.41) 359 99.1 33.8
7168 K 123M 16.73 (15.23) 445 118.1 42.8
8192 K 145M 18.62 (17.45) 18.2 (15.6) 479 133.3 46.4

Table 3: Comparison timings for a single Lucas-Lehmer squaring and rebalancing: gpuLucas vs. CUDALucas,
Glucas and Prime95 benchmarks. GPU timings are on an NVIDIA GTX 480 and (in parentheses) overclocked
Tesla 2050. Glucas and Prime95 are on an Intel Core i7 CPU 940 processor at 2930 Mhz.

Prime95, the current GIMPS tester, tracks a steady 6.5–7x
slower for 1 thread on one core, but gets within 2.3–2.5x
when using 8 threads on all 4 cores of the host. In dis-
cussions on mersenneforum.org, Prime95 experts note that
its FFTs are well-tuned only for single-core, “with multi-
threading wedged in as an afterthought,” and that it will
always achieve better throughput by assigning one expo-
nent per core. The other GPU implementation, CUDALucas,
matches gpuLucas closely on the GTX 480 and beats it on
the Tesla 2050; however, given its current inability to use
non-power-of-two transforms, it runs 1-2x slower in prac-
tice, since Mersenne numbers too large for a given length
2m must use the next larger 2m+1. This will be discussed in
more detail below.

5. DISCUSSION

5.1 Comparison of gpuLucas and CUDALucas

CUDALucas has been developed by Yamada as a direct port
of MacLucasFFTW, itself a port to FFTW of a program tracing
its roots back to original code by Crandall et al. While gpu-

Lucas was designed ground-up as a data-parallel application,
taking a 1-digit-per-thread approach and using data-parallel
algorithms whenever possible, CUDALucas retains much of its
original character as highly optimized sequential code. It
does all computation in floating point, and loops over mul-
tiple digits in each thread for base-restoration, using similar
optimizations for carries and exact rounding as were used
sequentially. It uses the CUFFT complex-to-complex trans-
forms, but sets up its real data using real-to-complex FFT
code from Takuya Ooura’s FFT package [20], which is os-
tensibly faster than the CUFFT real-to-complex setup. It
is this that prevents it from using non-power-of-two trans-
forms, however, since the front-end code is strictly power-
of-two.
CUDALucas is much more complex than gpuLucas, but with

some nice touches, and it matches gpuLucas for speed at
its power-of-two transform sizes. A function timing-profile
comparison with gpuLucas remains to be done; it will be
noteworthy whether the expected slow-down of keeping all
computations in double-precision was offset by the rewritten
real-to-complex front-end for the CUFFT routines.

5.2 Issues with current implementation
gpuLucas uses the CUDA CUFFT library code; this has

optimizations for real-to-complex transforms, but is not per-
fectly suited for DFT-based multiplication, which does not
require sorted data in the frequency domain. Other ap-
proaches may give constant factor speedups over the general-
purpose CUDA libraries. A canonical reference for real-
valued FFT algorithms is Sorensen et al. [17].

Older versions of the CUDA library had a limit of 223

real or complex elements in a transform; this proved not to
be a problem given the reduced runlengths produced by the
IBDWT method and through the use of non-power-of-two
FFTs. Older drivers did, however, have problems with accu-
racy for non-power-of-two transforms; there were also bugs
in the cuFFT library that prevented more than 224 FFT
transformation from being done sequentially by an applica-
tion. All of these problems have been corrected as of the
Nov. 2010 CUDA 3.2 release.

Runtime convolution error checking remains ad hoc. The
current implementation checks for maximum rounding er-
rors every N/50 iterations by an O(lg n) reduction over per-
word roundoff distances, using a CUDPP prefix-scan with a
CUDPP_MAX function. This adds no significant amount to the
runtime, but if a per-iteration error test is desired, it can be
accomplished by an atomic_or() to a global variable on the
very improbable event of a |xj− round(x j)| value exceeding
the designated threshold < 0.5.

The multiplication code takes 60–70% of the inner loop
computation. If this were better optimized, the rest of the
code might be improved as well by making better use of
the GPU cores, using “warp-aware” computation similar to
the parallel-scan optimizations employed by Harris et al. [6];
these involve detailed knowledge of the SIMD processors in
the cores used by warps of 16–32 threads within each block,
allowing synchronized updates to shared memory without
explicit synchronization mechanisms.

5.3 Ongoing and Future Work
In the immediate future, the gpuLucas code will be released

to the public, along with the FFT non-power-of-two profil-
ing database and the code that generated it. This work may
be developed further into a standard suite of benchmarking
tools to profile FFT runtime and error-bounds with respect

to runlength and wordsize for large integer and polynomial
convolution and DWTs, establishing values for guaranteed
accuracy using Percival’s criteria, along with the current
values, for applications where randomness assumptions on
operands allow for more latitude.
The prefix-scan fast-carry modifications to CUDPP will

also be released, either by integration of the GPK-function
and necessary code fixes into the main project, or indepen-
dently under the public license.
There has been no attempt to integrate this code with

the formats and protocols for its use by the GIMPS project.
A number of participants have expressed interest in seeing
this happen. There is also interest in adapting the current
software to do more general Lucas-Lehmer-Reisel primality
testing, for numbers of the form k2n − 1, with 2n > k.
There are a number of other number theoretic applications
for IBDWT methods, and countless applications for large
integer and polynomial manipulation. The current code-
base provides a simple and clean testbed for experiments,
profiling, and large-integer library development.

Acknowledgments
The author would like to thank Shoichiro Yamada, creator
of CUDALucas, for explanation of design decisions in his im-
plementation. Thanks to Thomas Duell for providing more
timings of CUDALucas, and to Dr. Greg Childers the many
others on mersenneforum.org who have provided informa-
tion on current software and offers of help with the testing
and distribution of gpuLucas. Thanks to Harris, Sengupta
and Owens for their CUDPP software that I hacked so mer-
cilessly, and to Dr. Mark Harris personally for advice and
encouragement.

6. REFERENCES
[1] Crandall, R., and Fagin, B. Discrete weighted

transforms and large-integer arithmetic. Mathematics
of Computation 62, 205 (1994), 305–324.

[2] Crandall, R., and Pomerance, C. Prime Numbers:
A Computational Perspective, 2nd ed. Springer, 2005.

[3] Gaudry, P., Kruppa, A., and Zimmermann, P. A
GMP-based implementation of Schönhage-Strassen’s
large integer multiplication algorithm. In ISSAC ’07:
Proceedings of the 2007 International Symposium on
Symbolic and Algebraic Computation (New York, NY,
USA, 2007), ACM, pp. 167–174.

[4] Govindaraju, N. K., Larson, S., Grey, J., and
Manocha, D. A memory model for scientific
algorithms on graphics processors. Tech. Rep.
Microsoft Technical Report MSR TR 2006 108, The
University of North Carolina at Chapel Hill and
Microsoft Corp., 2006.

[5] Govindaraju, N. K., and Manocha, D. A memory
model for scientific algorithms on graphics processors.
Tech. rep., The University of North Carolina at
Chapel Hill, 2007.

[6] Harris, M., Sengupta, S., and Owens, J. D.
Parallel Prefix Sum (Scan) with CUDA.
Addison-Wesley, 2007, ch. 39, pp. 851–876.

[7] Hida, Y., Li, X. S., and Bailey, D. H. Algorithms
for quad-double precision floating point arithmetic. In
Proceedings of the 15th Symposium on Computer
Arithmetic (ARITH ’01) (Washington, DC, 2001),

N. Burgess and L. Ciminiera, Eds., IEEE Computer
Society, pp. 155–162.

[8] Hillis, W. D., and Steele, Jr., G. L. Data parallel
algorithms. Commun. ACM 29, 12 (1986), 1170–1183.

[9] Kirk, D. B., and Hwu, W. W. Programming
Massively Parallel Processors. Elsevier, 2010.

[10] Lehmer, D. H. An extended theory of Lucas’
functions. Ann. Math. 31, 3 (Jul 1930), 419–448. The
original paper on the Lucas-Lehmer test.

[11] Moreland, K., and Angel, E. The FFT on a GPU.
In Graphics Hardware 2003 (2003), M. Doggett,
W. Heidrich, W. Mark, and A. Schilling, Eds.,
Eurographics.

[12] Nguyen, H., Ed. GPU Gems 3. Addison-Wesley,
2007.

[13] Nvidia Corporation. NVIDIA CUDA Reference
Manual, Version 3.2, 3.2 ed. Santa Clara, CA, 2010.
http://developer.download.nvidia.com/compute/

cuda/3_2_prod/toolkit/docs/CUDA_Toolkit_

Reference_Manual.pdf.

[14] Percival, C. Rapid multiplication modulo the sum
and difference of highly composite numbers.
Mathematics of Computation 72, 41 (2002), 387–395.

[15] Sanders, J., and Kandrot, E. CUDA by Example:
An Introduction to General-Purpose GPU
Programming. Addison-Wesley, 2011.

[16] Schönhage, A., and Strassen, V. Schnelle
Multiplikation grosser Zahlen. Computing 7 (1971),
281–292.

[17] Sorensen, H. V., Jones, D. L., Heideman, M. T.,
and Burrus, C. S. Real-valued fast Fourier
transform algorithms. IEEE Trans. on Acoustics,
Speech, and Signal Processing ASSP-35, 6 (June
1987), 849–863.

[18] Thall, A. Extended-precision floating-point numbers
for GPU computation. Poster Session, ACM
SIGGRAPH ’06 Annual Conference, Boston, MA,
August 2006.

[19] Thall, A. Implementing a fast Lucas-Lehmer test on
programmable graphics hardware. Tech. rep.,
Technical Report 007-2, Alma College, 614 W.
Superior St., Alma, MI, 48801-1599, June 2007.

[20] Website. Ooura’s Mathematical Software Packages.
http://www.kurims.kyoto-u.ac.jp/~ooura/, 2006.

[21] Website. PrimeNet CPU Benchmarks (GIMPS).
http://www.mersenne.org/report_benchmarks/,
2010.

[22] Yamada, S. Discussion of CUDALucas implementation.
Personal correspondence, 2011.

