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Using unevaluated sums of paired or quadrupled single-
precision (f32) values, double-float (df64) and quad-float
(qf128) numeric types can be implemented on current 
GPUs and used efficiently and effectively for extended-
precision computation for real and complex arithmetic.  
These numeric types provide 48 and 96 bits of precision 
respectively at f32 exponent ranges for computer 
graphics and general purpose (GPGPU) programming. 

• Creating df64 data structures, basic arithmetic operations, and code 
for functions such as sqrt(x), ln(x), exp(x), and trigonometric functions 
taking df64 and f32 operands.

• Creating qf128 data structures and basic arithmetic operations and 
example functions;

• Creating a C++ df64 class for CPU-side interface with df64 fragment 
code, with tables of constants at df64 precision for p, e, ln(2).

• Creating test-applications to demonstrate the effectiveness and 
efficiency of extended-precision fragment code for graphics and 
GPGPU programming;

• Creating fast bitonic merging of addends for qf128.

• Creating complex cdf64 numbers and demonstrating their efficiency.

• Creating test-applications to study error-generation and propagation 
by basic and library methods;

Rationale for and Prior Work on Extended Precision

Modern GPUs have wide data-buses allowing extremely 
high throughput, effecting a stream-computing model 
and allowing SIMD/MIMD computation at the fragment 
(pixel) level. Machine precision is limited, however, to 
32-bit nearly IEEE 754 compliant floating-point. This 
limited precision of fragment-program computation 
presents a drawback for many GPGPU applications. 
GPU hardware will improve its IEEE compliance, but it is 
unlikely to support double or extended-precision 
arithmetic in the near future.

Techniques for performing extended-precision arithmetic 
in software using pairs of machine-precision numbers 
have a long history:  [Dekker 1971], [Wyatt 1976], and 
[Brent 1978]; the doubledoubles of [Briggs 1998] and 
quad-doubles of [Hida et al 2001].  The use and hazards 
of these numerical types is discussed in [Li 2000].

Double-Float and Quad-Float Computation on GPUs

The hardware support for vector operations in fragment 
programs makes them well-suited for double- and quad-
precision computation.  Preliminary exploration of the 
feasibility and error-characteristics of GPU double-floats 
has been done using the Cg language [Meredith and 
Bremer 2004] and the Brook language [Da Graça and 
Defour 2006].  The current research was undertaken 
independently and uses Cg, as did Meredith’s.  We 
chose Cg, despite some drawbacks, in order to support 
other projects in interactive graphics, image-analysis 
and visualization.

Achievements of the Current Project

This discussion will limit itself to df64 methods; techniques
for qf128 generalize similarly from the methods described
by Hida [5].  A df64 number A is an unevaluated sum of
two f32 numbers represented in Cg as a 2-vector of single-
precision floats:
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Arithmetic operations on these numbers are done 
exactly using the alo term to give the error on the ahi
term.  By allowing the alo term to be negative, we make 
use of the full 48-bits of precision available in the pair of 
values (23 bits + 1 hidden per mantissa).

Some points of interest:

1. Care must be taken to prevent compiler optimizations from altering or 
eliminated necessary computation.  Defining ONE as a uniform 
parameter-multiplier for constants was only one of the necessary 
kludges to sidestep the aggressive cgc compiler.

2. GPUs have a MAD operator, equivalent to the numerical MAC 
(multiply-and-accumulate), allowing

to be evaluated in a single command; preliminary tests seem to 
indicate that this is not an FMAC (fused multiply-and-accumulate), 
which has a single roundoff error and would allow more efficient 
versions of extended-precision routines.

3. Because GPU operations can act on the four elements of a float4 in 
a single operation, the above routines can be used for cdf64 complex 
values with no additional runtime overhead.  In terms of these basic 
ops, we get complex numbers for free.

d = a*b + c

float2 df64_add(float2 a, float2 b) {
// use parallelism to simultaneously compute 
//   [(s, err), (t, err)] = [(a.x + b.x), (a.y, b.y)]
float4 st = twoSumHiLo(a, b); 
st.y += st.z;
st = quickTwoSum(st.x, st.y); // assumes |st.x| >= |st.y|
st.y += st.w;
return quickTwoSum(st.x, st.y);

}

float2 df64_exp(float2 a) {
float2 outVal, r, rem, df_z;
if (!specialCase(outVal)) {

rem = df64_rem(a, df64M.LOG2, df_z);
int z = (int) df_z;
r = rem/64;
r = df64_expTAYLOR(r);
outVal = df64_mult(r, df64_npow(2.0*ONE, z));

}
return outVal;

}

Thanks to Dr. David Bremer (LLNL) and Dr. Jeremy Meredith (ORNL) for 
discussions of their experiments, and to Dr. Mark Harris for his inestimable help on 
GPU floating-point performance and other GPGPU issues.

References
Brent, R. (1978) A Fortran multiple-precision arithmetic package.  ACM Trans. Math. Softw. 4(1), 

57-70.
Briggs, K. (1998) Doubledouble floating point arithmetic.  http://keithbriggs.info/software.html.
Dekker, T. (1971) A floating-point technique for extending the available precision.  In Numerische 

Mathematik 18, 224-242.
G. Da Graca, D. Defour. Implementing of float-float operators on graphics hardware. 7th Conference 

on Real Numbers and Computers (RNC7), Nancy, France, July 2006. 
Hida, Y., Li, X., Bailey, D. (2001) Quad-double arithmetic:  algorithms, implementation, and 

application. Lawrence Berkeley National Laboratory, Technical Report LBNL-46996. 
Hillesland, K., Lastra, A. (2004) GPU floating-point paranoia. Proceedings of GPU2

Li, X., Demmel, J., Bailey, D., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kapur, M., Martin, M.,
Tung, T., Yoo, D. (2000).  Design, implementation and testing of extended and mixed precision 
BLAS. Lawrence Berkeley National Laboratory. Technical Report LBNL-45991

Meredith, J., Bremer D., et. al., “The GAIA Project: Evaluation of GPU-Based Programming 
Environments for Knowledge Discovery,” HPEC 2004, Boston. 

Wyatt, W.T., Lozier, D.W., Orser, D.J. (1976)  A portable extended precision arithmetic package and 
library with Fortran precompiler.  ACM Trans. Math. Softw. 2(3), 209-231.

The images in this example are areas of the Mandelbrot set in a region of the 
complex plane only 2.6x10-6 across. The right image was computed on the GPU 
using f32 precision floats; the left image used complex cdf64 floats.  The cdf64 code 
ran approximately 3x slower, averaging 8 frames/second for a 768x512 image; this 
includes time to compute an extended-precision square-root, unnecessary except to 
compare accuracy with d64 routines on the CPU.

DISCUSSION

Solution of PDEs for simulation, such as the above reaction-diffusion textures, can 
benefit from extended precision: on the left, a Grey-Scott RD-texture (original code 
by Mark Harris); on the right, a similar simulation at df64 precision, showing relative 
concentrations of reactants.

float2 df64_mult(float2 a, float2 b) {
// Multiply the hi-order terms at df64 precision,
//   then add the low-order products
float2 p = twoProd(a.x, b.x);
p.y += dot(a, b.yx);
return quickTwoSum(p.x, p.y); // renormalize product

}

Improvements to current implementation:

• Full implementation of df64, cdf64, qf128 and cqf128 as first-order 
primitives in Cg using preprocessor or compiler modifications.

• More in-depth study of error behavior given the non-strict IEEE 754 
compliance of current GPU hardware [Hillesland and Lastra 2004].

• Porting of these methods to Brook or CGiS or other non-graphics-
oriented stream languages for GPGPU.

• Careful and correct generation of NaN and ±Inf values.

• Improvements to code for range-reduction in numerical routines.

Future work!

• GPU-based fractal- and non-fractal data compression.

• Porting of GPU FFT methods to df64 and qf128 precision routines for 
applications in image generation and analysis, and in computational 
number theory (e.g. Lucas-Lehmer testing for Mersenne primes).

• Application of df64 and qf128 to solving linear systems, PDEs, and 
physically-based graphics applications.

• Application to primitives to shading and illumination effects

• Modification of code to create extended precision integer class for 
numerical algorithms.

A sample routine showing the
use of cdf64 complex variables
to generate a the Mandelbrot set
images used in the examples.


